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Abstract

This paper expands the scope of likelihood-based model selection tests to a broad class

of discrete choice models. A notable feature is that each of the competing models can make

either a complete or incomplete prediction. We provide a novel cross-fitted likelihood-

ratio statistic for such settings, which can be compared to a normal critical value. The

proposed test does not require any information on how an outcome is chosen when multiple

solutions are predicted. This allows the practitioner to compare, for example, a model

that predicts a unique equilibrium to another model that allows for multiple equilibria.

We examine the finite-sample properties of the test and provide guidance on the choice

of tuning parameters through Monte Carlo experiments.
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1 Introduction

Selecting a suitable model is a crucial step in many empirical studies. Since the work of

Akaike (1973), the Kullback-Leibler information criterion (KLIC) has been a central tool to

measure a model’s fit to the unknown data-generating process (DGP). When two competing

models are considered, a natural way to select one of them is to compare their fit by the

difference between their KLIC. Since the seminal work of Vuong (1989), model selection tests

based on the sample counterpart of this quantity, the log-likelihood ratio (LR), have been

applied widely.1

The goal of this paper is to expand the scope of the likelihood-based model selection tests

to a wide range of discrete choice models. Discrete choice models describe how an outcome Y

is generated from economic primitives and observable covariates X. These models are com-

monly used to analyze economic decisions, such as household consumption, labor supply, firm

entry, and government regulatory choices. In recent applications, models with set-valued (or

incomplete) predictions have become more common because of their flexibility to accommo-

date strategic interaction, dynamic behavior, and rich unobserved heterogeneity. Examples

include discrete games (Ciliberto and Tamer, 2009), dynamic discrete choice models (Honoré

and Tamer, 2006; Berry and Compiani, 2022; Chesher et al., 2024), discrete choice models

with heterogeneous choice sets (Barseghyan et al., 2021) or endogeneity (Chesher and Rosen,

2017), Auctions under general bidding behavior (Haile and Tamer, 2003), network forma-

tion (Miyauchi, 2016; Sheng, 2020), product offerings (Eizenberg, 2014), exporter’s decisions

(Dickstein and Morales, 2018) and school choices (Fack et al., 2019). Incomplete models allow

the model to predict multiple outcome values. The development of the applications above

reflects the researchers’ willingness to remain robust to certain aspects of their models that

are not fully understood.

Just like conventional complete models, two different economic structures with incom-

pleteness can lead to distinct predictions, resulting in different explanatory power regarding

the observed data. In this context, practitioners face the choice of a model specification.

For instance, when analyzing discrete games, one might want to compare a game of strate-

gic substitution with a game of strategic complementarity. It is also common to compare a

complete baseline model with a more general incomplete model that includes the former as a

special case. For example, in the context of export decisions, Dickstein and Morales (2018)

compared parameter estimates from a complete perfect foresight model with those from a

more general model that relaxed the assumptions about the firms’ information set.

1See, for example, Fafchamps (1993), Palfrey and Prisbrey (1997), Cameron and Heckman (1998), Caballero
and Engel (1999), Nyarko and Schotter (2002), Coate and Conlin (2004), Paulson et al. (2006), Barseghyan
et al. (2013), Francois et al. (2015), Kendall et al. (2015), to name a few.
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While model selection is crucial in these situations, applying Vuong’s (1989) original like-

lihood ratio test becomes challenging when at least one of the models is incomplete. This

difficulty arises because an incomplete model can have multiple likelihoods for each parameter

value. Additionally, the parameters in such models are often only partially identified. There-

fore, any model selection test must address these non-standard features. These complexities

may explain why a direct analogy to Vuong’s test has not yet been developed.

We address these challenges by constructing a likelihood as follows. For each model and

parameter θ, we consider a population problem of selecting the density qθ,y|x closest in the

KLIC to the DGP density p0,y|x among the ones consistent with θ. As shown in Kaido and

Molinari (2024), finding such a density can be formulated as a convex program. Upon solv-

ing the problem, we impose the model’s sharp identifying restrictions as constraints. This

ensures that the likelihood uses all information in each model. We then form a likelihood

ratio using the KLIC projection qθ,y|x while replacing the unknown DGP p0,y|x with a non-

parametric estimator p̂n,y|x. This construction generalizes the standard likelihood framework

to incomplete models. Using the KLIC to construct a model density is in the spirit of Vuong

(1989). We note that the models under consideration may be misspecified (White, 1996).

Hence, the goal here is to select a model that is closer to the DGP in terms of the chosen

information criterion.

We further study the asymptotic properties of the proposed LR statistic. Vuong (1989)

demonstrated that the limiting distribution of the standard LR statistic changes, depending

on whether the two models overlap or not. This feature also applies to our statistic, posing

a challenge in ensuring the uniform validity of inference across different data-generating

processes. To address this challenge, we incorporate regularization into the statistic based on

the work of Shi (2015b) and Schennach and Wilhelm (2017). The regularization ensures that

our proposed test statistic is asymptotically non-degenerate and follows a standard normal

distribution, regardless of the underlying data-generating process, thus making inference more

tractable. This tractability comes at the cost of choosing a regularization parameter. We

examine how to choose its value through simulations.

This paper contributes to the literature of model selection in parametric models that

followed Vuong (1989). Rivers and Vuong (2002) consider model selection criteria other than

the likelihood function to allow for a broad class of estimation methods and dynamic models,

with a focus on mean squared errors of prediction. Li (2009) employs simulated mean squared

errors of prediction to deal with complex structural models. Chen et al. (2007) compare a

parametric model with a moment equality model. Shi (2015b) and Schennach and Wilhelm

(2017) modify the classical Vuong test to achieve uniform size control for overlapping and

nonoverlapping models. Shi (2015b) uses the local asymptotic theory to design a higher-order
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bias correction and a variance adjustment to the test statistic. Liao and Shi (2020) extend this

idea to semi/non-parametric models. Schennach and Wilhelm (2017) add noise to the test

statistic by sample-splitting. However, none of the aforementioned tests can accommodate

incomplete models.

To our knowledge, Shi (2015a) and Hsu and Shi (2017) are the only model selection tests

that can accommodate an incomplete model. Their tests are based on the generalized empir-

ical likelihood (GEL) statistic for models characterized by moment restrictions. Shi (2015a)

only consider a finite number of unconditional moment restrictions. Hsu and Shi (2017)

propose the average generalized empirical likelihood (AGEL) to handle conditional moment

restrictions.Their tests are applicable if both competing models are characterized by moment

equalities or inequalities. If any of the models are complete, one needs to derive equiva-

lent conditional moment restrictions instead of directly using the likelihood. Our approach

complements theirs by providing an alternative statistic that compares the likelihoods of the

two models, which does not require the researcher to derive conditional moment restrictions.

This approach is computationally tractable when likelihoods are available in closed form in

many cases. The recent work of Chen and Kaido (2023) develops a score test for testing

the null hypothesis of model completeness against an incomplete alternative. Our tests differ

from theirs in that (i) the competing models can be incomplete in our setting, whereas one

of the models must be complete and nested by the other model in their setting; and (ii) the

competing models can be misspecified in our framework.

Throughout, we use upper case letters (e.g., W ) to represent a random element and

lower case letters (e.g., w) to denote the specific values the random element can take. For

any random elements A and B, A ∼ B means equality in distribution, and A ⊥ B means

statistical independence. We use A|B to represent the conditional distribution of A given

B. We write the support of A and the conditional support of A given B as supp(A) and

supp(A|B), respectively.

2 Set-up and Notation

Let Y ∈ Y ⊆ RdY and X ∈ X ⊆ RdX denote, respectively, observable endogenous and

exogenous variables, and U ∈ U ⊆ RdU denote latent variables. We assume Y is a finite set.

Let P0 ∈ ∆(Y ×X ) denote the distribution of (Y,X), where for a space S, ∆(S) denotes the
set of all Borel probability measures on (S,ΣS), and ΣS is the Borel σ-algebra on S. For

S = Y × X we let ΣS equal the product σ-algebra ΣY × ΣX .

Suppose a model imposes restrictions on the joint behavior of (Y,X,U), and that these re-

strictions are expressed through a measurable correspondence known up to a finite-dimensional
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parameter vector θ ∈ Θ ⊂ Rdθ :

Y ∈ G(U |X; θ), a.s. (1)

If G is singleton-valued a.s., there exists a function g : U × X ×Θ → Y such that

Y = g(U |X; θ). (2)

The structure in (1) therefore nests standard complete discrete choice models.

Let F = {Fθ : θ ∈ Θ} denote a family of distributions for the latent variables U , known

up to a finite-dimensional parameter vector that is part of θ. An economic structure is then

summarized by the tuple (G,Θ,F). We illustrate the objects above with known examples.

The first example is a discrete game of complete information (Bresnahan and Reiss, 1990;

Tamer, 2003).

Example 1 (Discrete Games): Consider a binary-response game with two players (e.g.

firms). Each player may either choose y(j) = 0 or y(j) = 1. The payoff of player j is

π(j) = y(j)
(
x(j)′δ(j) + β(j)y(−j) + u(j)

)
, (3)

where y(−j) ∈ {0, 1} denotes the other player’s action, x(j) is player j’s observable charac-

teristics, and u(j) is a payoff shifter that is unobservable to the econometrician. The payoff

is assumed to belong to the players’ common knowledge. A policy-relevant parameter is the

strategic interaction effect β(j) which captures the impact of the opponent’s taking y(−j) = 1

on player j’s payoff. The sign of this parameter determines the nature of the game.

Suppose the players play a pure strategy Nash equilibrium (PSNE), but the researcher

does not know the equilibrium selection. Let y = (y(1), y(2)). In the presence of negative

externalities, i.e., β(j) < 0 for j = 1, 2, one can summarize the set of PSNEs by the following
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correspondence (Beresteanu et al., 2011, Proposition 3.1), where θ = (β(1), β(2), δ(1), δ(2)):

G(u|x; θ) =



{(0, 0)} u ∈ S{(0,0)}|x;θ ≡ {u : u(j) < −x(j)′δ(j), j = 1, 2},

{(0, 1)} u ∈ S{(0,1)}|x;θ ≡ {u(1) < −x(1)′δ(1), u(2) > −x(2)′δ(2)},

∪{−x(1)′δ(1) < u(1) < −x(1)′δ(1) − β(1), u(2) > x(2)′δ(2) − β(2)}

{(1, 0)} u ∈ S{(1,0)}|x;θ ≡ {u(1) > −x(1)′δ(1) − β(1), u(2) < −x(2)′δ(2) − β(2)},

∪{−x(1)′δ(1) < u(1) < −x(1)′δ(1) − β(1), u(2) < −x(2)′δ(2)}

{(1, 1)} u ∈ S{(1,1)}|x;θ ≡ {u : u(j) > −x(j)′δ(j) − β(j), j = 1, 2},

{(1, 0), (0, 1)} u ∈ S{(0,1),(1,0)}|x;θ ≡ {u : −x(j)′δ(j) < u(j) < −x(j)′δ(j) − β(j), j = 1, 2}.
(4)

Note that the model predicts multiple equilibria when u ∈ S{(0,1),(1,0)}|x;θ (see Figure 1). A

special case of this model is Berry’s (1992) specification that assumes δ(j) = δ and β(j) = β

for all j. Under this symmetry assumption, the equilibrium number of entrants is uniquely

determined. Let N = y(1) + y(2) and let θ = (β, δ). Then, the complete prediction of the

model is

N = g(u|x; θ) =


0 u ∈ S{(0,0)|x;θ}

1 u ∈ S{(0,1)|x;θ} ∪ S{(0,1),(1,0)|x;θ} ∪ S{(1,1)|x;θ}

2 u ∈ S{(1,1)|x;θ}.

Another possible structure to consider is a game of strategic complementarity, i.e., β(j) >

0, j = 1, 2. This structure’s predicted equilibria are

G(u|x; θ) =



{(0, 0)} u ∈ S{(0,0)}|x;θ ≡ {u(1) < −x(1)′δ(1) − β(1), u(2) < −x(2)′δ(2)}

∪{−x(1)′δ(1) − β(1) ≤ u(1) < −x(1)′δ(1), u(2) < −x(2)′δ(2) − β(2)},

{(0, 1)} u ∈ S{(0,1)}|x;θ ≡ {u(1) < −x(1)′δ(1) − β(1), u(2) ≥ −x(2)′δ(2)},

{(1, 0)} u ∈ S{(1,0)}|x;θ ≡ {u(1) ≥ −x(1)′δ(1), u(2) < −x(2)′δ(2) − β(2)},

{(1, 1)} u ∈ S{(1,1)}|x;θ ≡ {u(1) ≥ −x(1)′δ(1) − β(1), u(2) ≥ −x(2)′δ(2)}

∪{u(1) ≥ −x(1)′δ(1),−x(2)′δ(2) − β(2) ≤ u(2) < −x(2)′δ(2)},

{(0, 0), (1, 1)} u ∈ S{(0,0),(1,1)}|x;θ ≡ {−x(j)′δ(j) − β(j) ≤ u(j) < −x(j)′δ(j), j = 1, 2}.
(5)

In this case, the model predicts (0, 0) and (1, 1) as multiple equilibria for some value of u.
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u(1)

u(2)

S{(0,1)}|x;θ

S{(1,0)}|x;θ

S{(0,1),(1,0)}|x;θ

−x(2)δ(2) − β(2)

−x(1)δ(1) − β(1)

−x(2)δ(2) − β(2)

S{(1,1)}|x;θ

S{(0,0)}|x;θ

−x(2)δ(2)

−x(1)δ(1)

Figure 1: Level sets of G(·|x; θ) with β(j) < 0, j = 1, 2.

u(1)

u(2)

S{(0,1)}|x;θ

S{(1,0)}|x;θ

S{(0,0),(1,1)}|x;θ

−x(2)δ(2)

S{(1,1)}|x;θ

S{(0,0)}|x;θ

−x(2)δ(2) − β(2)

−x(1)δ(1) − β(1)

Figure 2: Level sets of G(·|x; θ) with β(j) > 0, j = 1, 2.

The second example is a multinomial choice model with heterogeneous choice sets.

Example 2 (Heterogeneous Choice Sets): Consider a discrete choice model, with a finite

universe of alternatives J = {1, . . . , J}. Each alternative is characterized by a vector of

covariates Xj , which might vary across decision makers, and let X = [Xj , j ∈ J ]. Let U

denote a vector representing the individual’s unobserved taste.

The decision maker faces a choice set C ⊆ J and chooses the alternative Y ∈ C that

maximizes their utility:

Y ∈ argmax
j∈C

W (j,X,U ; θ). (6)

The researcher observes (Y,X), but not C, and wishes to learn features of θ.

One may take different strategies to treat the choice set formation process. One possibility

is to model the process explicitly. For example, Goeree (2008) specifies a parametric model of

random choice sets. This approach determines the conditional distribution of (C,U)|X. The

complete model in (6) then induces a unique likelihood function.2 Alternatively, Barseghyan

et al. (2021) only assume each decision maker draws a set of cardinality at least κ. For given

θ ∈ Θ and x ∈ X , Barseghyan et al. (2021, Lemma A.1) show that the set of optimal choices

2This is provided that a tie occurs with probability 0 or the researcher specifies a tie-breaking rule.
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is a measurable correspondence:

G(U |x; θ) = ∪K⊆J :|K|≥κ{argmax
j∈K

W (j, x, U ; θ)}. (7)

2.1 Comparing Models

Let C be the collection of all subsets of Y. Define the containment functional νθ : C×X → [0, 1]

associated with G by

νθ(A|x) =
∫
U
1{G(u|x; θ) ⊆ A}dFθ(u), ∀A ∈ C. (8)

This functional uniquely determines the distribution of the random set G|X (Molchanov,

2005). The model prediction (1), however, does not uniquely determine the conditional

distribution of the outcome Y . Artstein’s theorem (see e.g. Molinari, 2020) ensures the set

of all model predicted conditional distributions of Y satisfying (1) is the core of νθ:

core(νθ(·|x)) ≡ {Q ∈ M(ΣY ,X ) : Q(A|x) ≥ νθ(A|x), A ∈ C} . (9)

A system of inequalities Q(·|x) ≥ νθ(·|x), called the sharp identifying restrictions, character-

izes the core. They are known to contain all information in the underlying model (Galichon

and Henry, 2011).

Assume that there are σ-finite measures µ and ν on (Y,ΣY ) and (X ,ΣX), respectively,

a product measure ζ ≡ µ × ν on (Y × X ,ΣY X), and that for all θ ∈ Θ, x ∈ X , and

Q ∈ core(νθ(·|x)), Q ≪ µ. Then, given (9), one can define the set of conditional densities

associated with core(νθ(·|x)):

qθ ≡
{
qy|x : qy|x = dQ(·|x)/dµ, Q ∈ core(νθ(·|x)), x ∈ X

}
. (10)

Following Kaido and Molinari (2024), we define a model as the collection of sets qθ across

θ ∈ Θ:

Q ≡ {qθ : θ ∈ Θ} .

Consider competing structures (Gs,Θs,Fs), s = 1, 2. For each s, let Qs be the model

induced by structure (Gs,Θs,Fs). We compare the models in terms of their closeness to the

true density p0 = dP0/dµ. For a measure space (Ω,F, ζ), let f : Ω 7→ R+ be a measurable

function satisfying
∫
fdζ < ∞ and

∫
S f ln fdζ < ∞ where S = {ω ∈ Ω : f(ω) > 0}. The

[8]



Kullback-Leibler Information Criterion (KLIC) between f and another density f ′ is

I(f ||f ′) ≡
∫
S
f ln

f

f ′dζ. (11)

Let f denote a set of measurable functions f ′ : Ω 7→ R+ satisfying
∫
S f ln f ′dζ < ∞. The

KLIC between f and f is

I(f ||f) ≡ inf
f ′∈f

I(f ||f ′) (12)

Given a joint density function f(y, x), its associated conditional density function f(y|x), and
another conditional density function f ′(y|x), we denote their conditional KLIC by

I(f ||f ′) ≡
∫
Y×X

f(y, x) ln
f(y|x)
f ′(y|x)

dζ(y, x) (13)

and use Eq. (13) in the KL divergence measure in Eq. (12).

We aim to test the following null hypothesis:

H0 : I(p0||Q1) = I(p0||Q2). (14)

It states that the two structures induce models that attain the same value of KLIC to p0. A

one-sided alternative hypothesis is

H1 : I(p0||Q1) < I(p0||Q2). (15)

One can select Model 1 over Model 2 if the test suggests strong evidence against H0 in favor

of H1.

We recast the comparison of KLIC into a comparison of expected log-likelihood functions,

building on the insights of Akaike (1973) and White (1996). For each model, I(p0||Q) =

infθ∈Θ I(p0||qθ). For each θ, the following equalities hold:

I(p0||qθ) = inf
q∈qθ

∫
Y×X

p0(y, x) ln
p0,y|x(y|x)
qy|x(y|x)

dζ(y, x)

=

∫
X
p0,x(x) inf

qy|x∈qθ,x

∫
Y
p0,y|x(y|x) ln

p0,y|x(y|x)
qy|x(y|x)

dµ(y)dν(x), (16)

where

qθ,x = {qy|x : qy|x = dQ(·|x)/dµ, Q ∈ core(νθ(·|x))}. (17)
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The inner optimization problem in (16) is a convex program with a strictly convex objective

function. Hence, a unique solution exists. Let

q∗ϑ,y|x(·|x; p0,y|x) = argmin
qy|x∈qϑ,x

∫
Y
p0,y|x(y|x) ln

p0,y|x(y|x)
qy|x(y|x)

dµ(y). (18)

One can view q∗ϑ,y|x as the projection of p0 on qϑ via KLIC. Since Y is discrete, it is straight-

forward to compute this solution by solving the convex program. We illustrate how to derive

this object in Section 4. Below, we call the map ϑ → q∗ϑ,y|x profiled-likelihood function because

it is a function obtained by profiling out the selection mechanism.3 Below, for each s, let

q∗θs,y|x denote the profiled-likelihood in model s.

Recall that the KL divergence is I(p0||qθ) = EP0 [ln p0(Y |X)]−EP0 [ln q
∗
θ,y|x(Y |X)] whose

first term does not depend on the models. For each s ∈ {1, 2}, denote the value function of

the convex program associated with the KL divergence between qθs,x and py|x by

L(x, θs, py|x) ≡ sup
qy|x∈qθs,x

∫
Y
py|x(y|x) ln qy|x(y|x; py|x)dµ(y)

= EP [ln q
∗
θs,y|x(Y |X; py|x)|X = x].

Then, we can reformulate the null hypothesis as

H0 : EP0 [L(X, θ∗1, p0,y|x)] = EP0 [L(X, θ∗2, p0,y|x)],

where θ∗s is a maximizer of θs 7→ EP0 [L(X, θs, p0,y|x)], s = 1, 2.4 This reformulation shows the

model comparison boils down to comparing the maximized expected likelihoods, where each

likelihood function is q∗ϑ,y|x. When the underlying structure is complete, q∗ϑ,y|x coincides with

the standard likelihood function because each qθ is a singleton set. Hence, this construction

nests Vuong’s (1989) original framework as a special case.

We adopt the following definition of correct specification from Kaido and Molinari (2022).

Definition 1 (Correctly Specified Model & Misspecified Model): A model is correctly

specified if p0 ∈ qθ for some qθ ∈ Q ≡ {qϑ : ϑ ∈ Θ}, and misspecified otherwise.

Hence, a model is misspecified when one cannot recover the data-generating process p0

even if one augments the model by a selection mechanism. For conceptual purposes, it is

3This is because each element of core(νθ(·|x)) can also be written as the set of probability measures such
that Q(·|x) =

∫
η(·|x, u)dFθ(u|x), where η is a conditional distribution (selection mechanism) supported on

G(u|x; θ).
4The maximizer is not necessarily unique. This does not cause a problem because the results below does

not require a unique maximizer of the objective function.
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useful to define how the two models relate to each other using the profiled likelihood. We

follow Vuong (1989) and Liao and Shi (2020) to introduce the following terms.

Definition 2 (Strictly Non-nested Models): Models Q1 and Q2 are strictly nonnested if

there does not exist (θ1, θ2) ∈ Θ1 ×Θ2 such that q∗θ1,y|x(y|x; p0,y|x) = q∗θ2,y|x(y|x; p0,y|x) for all

(y, x) ∈ Y × X .

Definition 3 (Overlapping Models): Models Q1 and Q2 are overlapping if they are not

strictly nonnested.

Definition 4 (Nested Models): Model Q1 nests Q2 if, for each θ2 ∈ Θ2, there exists

θ1 ∈ Θ1 such that q∗θ1,y|x(y|x; p0,y|x) = q∗θ2,y|x(y|x; p0,y|x) for all (y, x) ∈ Y × X .

2.2 Test Statistic and Implementation

Our test uses a sample analog of the following quasi log-likelihood ratio (QLR)

QLRP0
= max

θ1∈Θ1

EP0 [L(X, θ1, p0,y|x)]− max
θ2∈Θ2

EP0 [L(X, θ2, p0,y|x)],

and examines if it is far enough from 0.

Suppose a sample {(Yi, Xi), i = 1, . . . , n} of size n is available. Our test adds suitable

regularization to a QLR statistic so that it admits an asymptotically normal approximation

over a wide class of DGPs. We will explain how cross-fitting and regularization ensure the

uniform validity of inference in Section 3. Below, we first describe the algorithm to compute

the test statistic.

Algorithm 1: (Cross-fit QLR-test):

Step 0: Split the entire sample (indexed by i ∈ {1, . . . , n}) into two equal halves denoted by

I1 and I2. For each ℓ ∈ {1, 2}, let I−ℓ = {1, . . . , n} \ Iℓ.

Step 1: For each ℓ ∈ {1, 2}, estimate p0,y|x nonparametrically using the observations in Iℓ;

denote the resulting estimator by p̂Iℓ,y|x.

Step 2: For each s, ℓ ∈ {1, 2}, compute the weighted quasi maximum-likelihood estimator

(QMLE) of θs by plugging in p̂Iℓ,y|x for p0 and using the observations in Iℓ:

θ̂s,Iℓ ∈ argmax
θs∈Θs

2

n

∑
i∈Iℓ

L(Xi, θs, p̂Iℓ,y|x).
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Step 3: For each ℓ ∈ {1, 2}, calculate the QLR statistic by plugging in p̂Iℓ,y|x for p0, θ̂1,I−ℓ

for θ1, and θ̂2,I−ℓ
for θ2, and using the observations in Iℓ:

Q̂LRIℓ
=

2

n

∑
i∈Iℓ

L(Xi, θ̂1,I−ℓ
, p̂Iℓ,y|x)−

2

n

∑
i∈Iℓ

L(Xi, θ̂2,I−ℓ
, p̂Iℓ,y|x).

Step 4: For each ℓ ∈ {1, 2}, calculate the variance statistic by plugging in p̂Iℓ,y|x for p0, θ̂1,I−ℓ

for θ1, and θ̂2,I−ℓ
for θ2, and using the observations in Iℓ:

σ̂2
Iℓ
(θ̂I−ℓ

) = σ̂2
1,Iℓ

(θ̂1,I−ℓ
)− 2σ̂12,Iℓ(θ̂I−ℓ

) + σ̂2
2,Iℓ

(θ̂2,I−ℓ
),

where θ̂Iℓ = (θ̂′1,Iℓ , θ̂
′
2,Iℓ

)′,

σ̂2
s,Iℓ

(θs) =
2

n

∑
i∈Iℓ

(
ln q∗θs,y|x(Yi|Xi; p̂Iℓ,y|x)−

2

n

∑
i∈Iℓ

ln q∗θs,y|x(Yi|Xi; p̂Iℓ,y|x)
)2

, s = 1, 2

σ̂12,Iℓ(θ) =
2

n

∑
i∈Iℓ

(
ln q∗θ1,y|x(Yi|Xi; p̂Iℓ,y|x)−

2

n

∑
i∈Iℓ

ln q∗θ1,y|x(Yi|Xi; p̂Iℓ,y|x)
)

×
(
ln q∗θ2,y|x(Yi|Xi; p̂Iℓ,y|x)−

2

n

∑
i∈Iℓ

ln q∗θ2,y|x(Yi|Xi; p̂Iℓ,y|x)
)
.

Step 5: For each ℓ ∈ {1, 2}, with an auxiliary random variable Uℓ ∼ N(0, 1) (independent

of the sample), construct the subsample test statistic as

T̂Iℓ =

√
n/2Q̂LRIℓ

+ ω̂IℓUℓ√
σ̂2
Iℓ
(θ̂I−ℓ

) + ω̂2
Iℓ

, (19)

where ω̂Iℓ is a data-dependent regularization parameter. We recommend

ω̂Iℓ = (1 + C · lnn · σ̂2
Iℓ
(θ̂I−ℓ

))−1 (20)

for a user-chosen constant C > 0.

Step 6: Average across ℓ to obtain the final cross-fit test statistic:

T̂n =
T̂I1 + T̂I2√

2
.

Let zα denote the α quantile of N(0, 1). For the two-sided test, one can perform the

[12]



following substeps. Namely, reject H0 and pick model 1 if T̂n > z1−α/2, reject H0 and pick

model 2 if T̂n < −z1−α/2, and do not reject H0 otherwise.

If one knows a priori EP0 [L(X, θ∗1, p0,y|x)] ≥ EP0 [L(X, θ∗2, p0,y|x)] one can conduct a one-

sided test. For example, this approach can be used if the researcher knows Model 1 nests

Model 2. Suppose the alternative hypothesis is

H1 : EP0 [L(X, θ∗1, p0,y|x)] > EP0 [L(X, θ∗2, p0,y|x)]. (21)

In this case, reject H0 and pick model 1 if T̂n > z1−α, and do not reject H0 otherwise.

The main component of the test statistic is the quasi-likelihood ratio Q̂LRIℓ
, which com-

pares the two models’ fit to the data. A novel feature is that we use the profiled-likelihood

q∗θ,y|x to address the incompleteness of the model. The statistic has several additional features.

First, it involves a regularization term ω̂IℓUℓ. This term keeps the statistic non-degenerate

when Q̂LRIℓ
’s variance is close to zero, a feature that is known to raise a challenge for

uniformly valid inference when the two models overlap. Second, the denominator of T̂Iℓ stan-

dardizes the statistic so that its asymptotic distribution is standard normal. Finally, we use

the sample-splitting technique. We construct a parameter estimate θ̂I−ℓ
from observations

outside Iℓ and evaluate the likelihood on Iℓ. This helps us ensure the validity of inference

even when θ∗s is only partially identified.

3 Asymptotic Properties of the QLR test

The QLR statistic outlined above is asymptotically normally distributed under H0 and local

alternatives. We provide high-level assumptions that ensure this result and use them to

establish the asymptotic uniform validity of the test.

We first collect key objects for the theoretical analysis of the QLR statistic. For each s,

define the pseudo-true identified set as the set of maximizers of the expected log-likelihood:

Θ∗
s(p0) ≡ argmax

θs∈Θs

EP0 [ln q
∗
θs,y|x(Y |X; p0,y|x)].

This set collects the parameter values θs that minimize the KL divergence to the data-

generating process p0. It reduces to a singleton containing the pseudo-true parameter value

θ∗s as in White (1996) if the underlying structure is complete and θ∗s is unique. If a model is

correctly specified, θ∗s coincides with the true value.

For each s ∈ {1, 2}, consider an arbitrary parameter value θs ∈ Θs. Define the projection
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of θs on Θ∗
s(P0) by

θ∗s(θs, P0) = arg inf
θ∗s∈Θ∗

s(P0)
∥θs − θ∗s∥. (22)

Let θ∗(θ, P0) = ((θ∗1(θ1, P0))
′, (θ∗2(θ2, P0))

′)′.

Finally, for each function f : Y×X → R, letGn(f) = n−1/2
∑n

i=1

(
f(Yi, Xi)−EP0 [f(Yi, Xi)]

)
.

Let H be a parameter space to which p0,y|x belongs and let ∥p−p′∥H be a pseudo-metric on H.

For each k = (k1, k2) ∈ N2, let Fk = {f : Y×X → R|f(y, x) =
∏2

s=1(ln q
∗
θs,y|x(y|x; py|x))

ks , θ ∈
Θ, py|x ∈ H}.

3.1 The asymptotic size and power of the proposed test

Throughout, we assume the availability of a random sample.

Assumption 1: {(Yi, Xi)}ni=1 are i.i.d. under P0.

We first analyze the asymptotic behavior of the QMLE θ̂s,Iℓ for s, ℓ ∈ {1, 2}. To charac-

terize θ̂s,Iℓ and Θ∗
s(P0) by first-order conditions, we make the following assumptions.

Assumption 2: (a) Y is a finite set. For each s ∈ {0, 1}, (b) there is a collection AG ⊂ 2Y

such that AG = supp(G(·|x; θs)) ≡ {A ⊆ Y : Fθs(G(U |x; θs) = A) > 0} for all θs ∈ Θs and

x ∈ X . (c) νθs(A|x) is continuously differentiable with respect to θs for all A ⊂ Y and x ∈ X .

Assumption 2(a) restricts attention to models with discrete outcomes. Assumption 2(b)

requires the support of the correspondence G(·|x; θs) not to vary with θs ∈ Θs. Assumption

2(c) is easily verified when Fθs is differentiable in θs. Under Assumption 2, we can establish

the differentiability of L(x, θs, py|x) with respect to θs (see Lemma 1(i) in Appendix). Then,

m(x, θs, py|x) ≡ ∂
∂θs

L(x, θs, py|x) is well-defined, and

2

n

∑
i∈Iℓ

m(Xi, θ̂s,Iℓ , p̂Iℓ,y|x) = 0, ℓ = 1, 2,

EP0 [m(X, θ∗s , p0,y|x)] = 0 ∀θ∗s ∈ Θ∗
s(P0).

We add the following regularity conditions to m(x, θs, py|x). Hence, θ∗s is characterized as

a solution to the score equation, the system of equations defined by the expected value of

m(X, ·, p0,y|x). Similarly, θ̂s,Iℓ solves the sample analog of the score equation.

We add the following regularity conditions to m(x, θs, py|x).
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Assumption 3: For each s ∈ {0, 1}, (a) there exist positive constants C and δ such that

∥EP0 [m(X, θs, p0,y|x)]∥ ≥ C · (d(θs,Θ∗
s(P0)) ∧ δ),

where d(a,B) ≡ infb∈B ∥a − b∥; (b) supθs,py|x ∥Gn(m(·, θs, py|x))∥ = Op(1); (c) there exists a

positive constant Km such that for any θs ∈ Θs and py|x, p̃y|x ∈ H, ∥EP0 [m(X, θs, py|x)] −
EP0 [m(X, θs, p̃y|x)]∥ ≤ Km∥py|x − p̃y|x∥H.

Assumption 4: For each ℓ ∈ {0, 1}, ∥p̂Iℓ,y|x − p0,y|x∥H = Op(n
−dp) for 1/4 < dp ≤ 1/2.

Assumption 3(a) ensures that θs 7→ ∥EP0 [m(X, θs, p0,y|x)]∥ increases not too slowly as θs

moves away from Θ∗
s(P0). This is a high-level condition which needs to be checked in each

example. Similar conditions are imposed in moment inequality models (Chernozhukov et al.,

2007). Kaido et al. (2022) further discusses this type of condition and how to check them

in specific examples. Assumption 3(b) requires the empirical process Gn(m(·, θs, py|x)) to

be stochastically bounded over (θs, py|x). Assumption 3(c) imposes Lipschitz continuity on

EP0 [m(X, θs, py|x)] with respect to py|x. Assumption 4 is a rate condition on p̂Iℓ,y|x, which

can be satisfied by kernel and sieve estimators under suitable smoothness conditions on p0,y|x.

Under Assumptions 1–4, we may ensure that the QMLE θ̂s,Iℓ is in an n−dp-neighborhood of

Θ∗
s(P0) (see Lemma 2 in Appendix).

Next, we analyze the asymptotic behavior of the subsample QLR statistic Q̂LRIℓ
for

ℓ ∈ {1, 2}. Under Assumption 2, we can also establish the directional differentiability of

py|x 7→ L(x, θs, py|x) with the directional derivative at py|x in the direction p̃y|x−py|x denoted

by D(x, θs, py|x, p̃y|x − py|x) (see Lemma 1(ii) in Appendix). We add the following regularity

conditions.

Assumption 5: (a) There exists a function B(·) : X → R such that E[B2(X)] < ∞ and

for each s ∈ {1, 2}, supθs∈Θs,py|x∈H ∥m(x, θs, py|x)∥ ≤ B(x), supθs∈Θs,py|x,p̃y|x∈H |D(x, θs, py|x,

p̃y|x − py|x)| ≤ B(x), and for any θ∗s ∈ Θ∗
s(P0) and any θs ∈ Θs and py|x ∈ H with ∥θs − θ∗s∥

and ∥py|x − p0,y|x∥H small enough,

|L(x, θs, py|x)− L(x, θ∗s , p0,y|x)− (θs − θ∗s)
′m(x, θ∗s , p0,y|x)−D(x, θ∗s , p0,y|x, py|x − p0,y|x)|

≤ B(x)(∥θs − θ∗s∥2 + ∥py|x − p0,y|x∥2H).

(b)
∫∞
0

√
lnN(ε,H, ∥ · ∥H)dε < ∞, where N(ε,H, ∥ · ∥H) denotes the covering number of size

ε for H, and for each s ∈ {1, 2}, Θs is a compact subset of Rdθ . (c) For each s ∈ {1, 2}, for
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any θ∗s ∈ Θ∗
s(P0) and py|x ∈ H with ∥py|x − p0,y|x∥H small enough,√

n/2EP0 [D(X, θ∗s , p0,y|x, py|x − p0,y|x)]−
√
2/n

∑
i∈Iℓ

α(Yi, Xi) = op(1),

where α(y, x) ≡
∑

ỹ∈Y(1{y = ỹ} − p0,y|x(ỹ|x)) ln q∗θ∗s ,y|x(ỹ|x, p0,y|x).

Assumption 5(a) requires a dominance condition on m(x, θs, py|x) and D(x, θs, py|x, p̃y|x−
py|x) and assumes that L(X, θs, py|x) can be linearized in θs and py|x. Assumption 5(b) re-

stricts the covering numbers for the parameter class {θs ∈ Θs, py|x ∈ H : ∥py|x − p0,y|x∥H ≤
δn}. Assumption 5(c) is a simplified version of Assumption 5.3 of Newey (1994). It imposes

the asymptotic equivalence between EP0 [D(X, θ∗s , p0,y|x, py|x − p0,y|x)] and the sample aver-

age of α(Y,X), where α(y, x) corresponds to the correction term for estimation of p0,y|x as

characterized in Proposition 4 of Newey (1994).

Under Assumptions 1–5, we can obtain an asymptotically linear representation of each

model’s contribution to the subsample QLR statistic (see Lemma 3 in Appendix):

(n/2)−1/2
∑
i∈Iℓ

L(Xi, θ̂s,I−ℓ
, p̂Iℓ,y|x) = (n/2)−1/2

∑
i∈Iℓ

ln q∗
θ∗s (θ̂s,I−ℓ

,P0),y|x
(Yi|Xi; p0,y|x) + op(1).

(23)

For brevity, let λθ(y|x; py|x) denote the logarithm of the ratio of the two profiled-likelihood

functions:

λθ(y|x; py|x) = ln q∗θ1,y|x(y|x; py|x)− ln q∗θ2,y|x(y|x; py|x).

Applying the asymptotically linear representation in (23) to the two models, we may approx-

imate the subsample QLR statistic as follows5

√
n/2(Q̂LRIℓ

−QLRP0
)

=
√
2/n

∑
i∈Iℓ

(λθ∗(θ̂I−ℓ
,P0)

(Yi|Xi; p0,y|x)− EP0 [λθ∗(θ̂I−ℓ
,P0)

(Y |X; p0,y|x)]) + op(1). (24)

To ensure the asymptotic normality of the leading term in (24), we impose the following dom-

inance condition on λθ∗(y|x; p0,y|x) for θ∗ ∈ Θ∗(P0), which allows us to invoke Lyapounov’s

central limit theorem (see Lemma 4 in Appendix).

Assumption 6: There exist positive constants M and ϵ and a function D : Y × X → R
such that EP0 [|D(Y,X)|2+ϵ] ≤ M and for all (y, x) ∈ Y×X and θ∗ ∈ Θ∗(P0), |λθ∗(y|x; p0,y|x)−
EP0 [λθ∗(Y |X; p0,y|x)]| ≤ D(y, x)σP0(θ

∗).

5To be precise, we apply the result to a subsequence of DGPs along which the asymptotic size is attained.
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Let σ2
P0
(θ) = EP0 [λ

2
θ(Y |X; p0,y|x)] − EP0 [λθ(Y |X; p0,y|x)]

2. The asymptotic variance of

the leading term in (24) is σ2
P0
(θ∗(θ̂I−ℓ

, P0)). We impose the following conditions for the

estimation of σ2
P0
(θ∗(θ̂I−ℓ

, P0)).

Assumption 7: (a) For each s ∈ {1, 2}, supθs∈Θs,py|x∈HEP0 [| ln q∗θs,y|x(Y |X; py|x)|] =

Op(1). (b) For each k = (k1, k2) ∈ N2 such that k1 + k2 ≤ 2, supf∈Fk |Gn(f)| = Op(1),

where Fk ≡ {f : Y × X → R|f(y, x) =
∏2

s=1(ln q
∗
θs,y|x(y|x; py|x))

ks , θ ∈ Θ, py|x ∈ H}.
(b) There exists a positive constant Kλ such that for any py|x, p̃y|x ∈ H and θ, θ̃ ∈ Θ,

|EP0 [λ
k
θ(Y |X; py|x)]− EP0 [λ

k
θ̃
(Y |X; p̃y|x)]| ≤ Kλ(∥θ − θ̃∥+ ∥py|x − p̃y|x∥H), k = 1, 2.

Assumption 7(a) bounds the first moment of the profiled log-likelihood. Assumption 7(b)

assumes the maximum of an empirical process defined over Fk is stochastically bounded,

which can be shown by applying a maximal inequality. Assumption 7(c) imposes Lipschitz

continuity on EP0 [λ
k
θ(Y |X; py|x)] with respect to θ and py|x. Under Assumptions 1–7, we can

show that σ2
P0
(θ∗(θ̂I−ℓ

, P0)) can be estimated at the same rate as p0,y|x using the subsample

variance statistic σ̂Iℓ(θ̂I−ℓ
) (see Lemma 5 in Appendix).

A well-known issue with model selection tests is the possible degeneracy of the QLR statis-

tic (Vuong, 1989; Shi, 2015b; Schennach and Wilhelm, 2017). In our context, σP0(θ
∗(θ̂I−ℓ

, P0))

can be arbitrarily close to 0. As a result, the leading term may not dominate the remainder

term in (24), causing the asymptotic distribution of
√
n/2(Q̂LRIℓ

− QLRP0
) to be non-

normal. We restrict attention to DGPs under which σP0(θ
∗(θ̂I−ℓ

, P0)) only converges to zero

at a polynomial rate.

Definition 5: Let P be the set of DGPs such that Assumptions 1–7 hold and for each

ℓ ∈ {1, 2} and any sequence {Pn ∈ P}, either σPn(θ
∗(θ̂I−ℓ

, Pn)) = Op(n
−dσ) for some dσ > 0

or σPn(θ
∗(θ̂I−ℓ

, Pn))
p→ σ∞ > 0.

The subsample test statistic in (19) adds a regularization term ω̂IℓUℓ, which keeps the

statistic non-degenerate even if the subsample QLR statistic is degenerate. The recommended

regularization parameter sequence in (20) has the following property (see Lemmma 6 in

Appendix):6

Condition 1: For each ℓ ∈ {1, 2} and any sequence {Pn ∈ P} such that σPn(θ
∗(θ̂I−ℓ

, Pn))
p→

σ∞ ∈ [0,∞), (a) if σ∞ = 0, we have ω̂Iℓ
p→ ω∞ > 0; (b) if σ∞ > 0, we have ω̂Iℓ

p→ 0.

Define P0 ≡ {P ∈ P : EP [L(X, θ∗1, py|x)] = EP [L(X, θ∗2, py|x)]}. This is the subset of

distributions in P that satisfy H0 : QLRP0
= 0. Define the two-sided model-selection test of

6Any other sequences that satisfy Condition 1 can be used.
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level α as

φ2-sided
n (α) = 1{|T̂n| > z1−α/2},

and the one-sided model selection test of level α for H0 against H1 : QLRP0
> 0 as

φ1-sided
n (α) = 1{T̂n > z1−α}.

The following theorem asserts that the proposed test achieves uniform asymptotic size control.

Theorem 1: Suppose Assumptions 1–7 hold. Then, for any sequence {Pn ∈ P0},

lim
n→∞

EPn [φn(α)] = α ,

for φn = φ2-sided
n or φn = φ1-sided

n .

The following theorem characterizes the lower bound of the asymptotic power of the

proposed test against local alternatives.

Theorem 2: Suppose Assumptions 1–7 hold. Then, for any sequence {Pn ∈ P \P0} such

that for each ℓ ∈ {1, 2}, σ2
Pn

(θ∗(θ̂I−ℓ
, Pn))

p→ σ∞ ∈ [0,∞) and
√
nQLRPn

→ h ∈ (0,∞),

lim inf
n→∞

EPn [φ
2-sided
n (α)] ≥ 1− Φ(z1−α/2 − h/(ω∞ ∨ σ∞)) + Φ(−z1−α/2 − h/(ω∞ ∨ σ∞)),

lim inf
n→∞

EPn [φ
1-sided
n (α)] ≥ 1− Φ(z1−α − h/(ω∞ ∨ σ∞)).

4 Examples

We revisit the examples to illustrate the proposed test. For notational simplicity, we drop

subscript s from the objects below.

4.1 Discrete games

For s = 1, the structure represents a game of strategic substitution. Let Θ = {θ =

(β(1), β(2), δ(1), δ(2)) : β(j) ≤ 0, δ(j) ∈ Θδ ⊂ Rdδ , j = 1, 2, }. The equilibrium correspon-

dence G is as in (4). Suppose the distribution of U = (U (1), U (2))′ belongs to a parametric

family F = {Fθ(·|x) : θ ∈ Θ}.

[18]



Define

η1(θ;x) ≡ Fθ(S{(1,0)}|x;θ|x) + Fθ(S{(0,1),(1,0)}|x;θ|x) + Fθ(S{(0,1)}|x;θ|x)

η2(θ;x) ≡ Fθ(S{(1,0)}|x;θ|x) + Fθ(S{(0,1),(1,0)}|x;θ|x)

η3(θ;x) ≡ Fθ(S{(1,0)}|x;θ|x).

Here, η1(θ;x) is the predicted probability of either Y = (1, 0) or (0, 1). Similarly, η2(θ;x)

is the upper bound on the probability of Y = (1, 0), and η3(θ;x) the lower bound on the

probability of the same event (see Figure 1).

Let p0,M ((1, 0)|x) ≡ p0((1,0)|x)
p0((1,0)|x)+p0((0,1)|x) be the relative frequency of outcome (1, 0) out

of the “Monopoly” event Y ∈ {(1, 0), (0, 1)}. The profiled likelihood takes the following

closed-form7:

q∗θ,y|x((0, 0)|x; p0,y|x) = Fθ(S{(0,0)}|x;θ|x) (25)

q∗θ,y|x((1, 1)|x; p0,y|x) = Fθ(S{(1,1)}|x;θ|x) (26)

q∗θ,y|x((1, 0)|x; p0,y|x) = p0,M ((1, 0)|x)η1(θ;x)I1(x; θ) + η2(θ;x)I2(x; θ) + η3(θ;x)I3(x; θ),
(27)

where

I1(x; θ) ≡ 1
{
η31(θ;x)/η

1(θ;x) ≤ p0,M ((1, 0)|x) ≤ η2(θ;x)/η1(θ;x)
}

I2(x; θ) ≡ 1
{
p0,M ((1, 0)|x) > η2(θ;x)/η1(θ;x)

}
I3(x; θ) ≡ 1

{
p0,M ((1, 0)|x) < η3(θ;x)/η1(θ;x)

}
.

Let us explain the intuition behind (25)-(27). First, q∗θ,y|x((0, 0)|x; p0,y|x) is simply the prob-

ability allocated to S{(0,0)}|x;θ because Y = (0, 0) is the unique equilibrium when U ∈
S{(0,0)}|x;θ. A similar argument applies to q∗θ,y|x((1, 1)|x; p0,y|x). Second, q∗θ,y|x((1, 0)|x; p0,y|x)
depends on the relative frequency p0,M ((1, 0)|x). For each θ, the model predicts the relative

frequency would lie in the interval [η3(θ;x)/η1(θ;x), η2(θ;x)/η1(θ;x)]. If p0,M ((1, 0)|x) is in
the interval (case 1), the profiled likelihood is proportional to it. If p0,M ((1, 0)|x) is above

η2(θ;x)/η1(θ;x) (cases 2), the profiled likelihood in (27) is given by the upper bound η2(θ;x)

of the predicted probability of Y = (1, 0). Finally, if p0,M ((1, 0)|x) is below η3(θ;x)/η1(θ;x)

(case 3), the profiled likelihood in (27) is given by the lower bound η3(θ;x) of the probability

of Y = (1, 0).

7See Kaido and Molinari (2022) for derivation. Since Y consists of four outcomes, we report the value of
the profiled likelihood for three outcome values below.
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For an alternative model (s = 2), consider one of Berry’s (1992) specification which

imposes the symmetry restriction β(j) = β and δ(j) = δ for j = 1, 2. This specification gives

the following likelihood function for N ∈ {0, 1, 2}:

q∗θ,y|x(0|x; p0,y|x) = Fθ(S{(0,0)}|x;θ|x), (28)

q∗θ,y|x(1|x; p0,y|x) = Fθ(S{(0,1)}|x;θ|x) + Fθ(S{(0,1),(1,0)}|x;θ|x) + Fθ(S{(1,0)}|x;θ|x), (29)

q∗θ,y|x(2|x; p0,y|x) = Fθ(S{(1,1)}|x;θ|x), (30)

where θ = (β, δ).

As another competing model, consider a game of strategic complementarity. Let Θ2 =

{θ = (β(1), β(2), δ(1), δ(2)) : β(j) ≥ 0, δ(j) ∈ Θδ ⊂ Rdδ , j = 1, 2, }. The equilibrium corre-

spondence for this case is as in (5). Let p0,N ((1, 1)|x) ≡ p0((1,1)|x)
p0((0,0)|x)+p0((1,1)|x) be the relative

frequencies of outcomes (1, 1) out of the “Non-Monopoly” event Y ∈ {(0, 0), (1, 1)}. An

argument similar to structure 1 shows the profiled-likelihood is

q∗θ,y|x((1, 0)|x; p0,y|x) = Fθ(S{(1,0)}|x;θ|x) (31)

q∗θ,y|x((0, 1)|x; p0,y|x) = Fθ(S{(0,1)}|x;θ|x) (32)

q∗θ,y|x((0, 0)|x; p0,y|x) = p0,N ((0, 0)|x)η1(θ2;x)I1(x; θ)

+ [η1(θ;x)− η2(θ;x)]I2(x; θ) + [η1(θ;x)− η3(θ;x)]I3(x; θ), (33)

where

η1(θ;x) = Fθ(S{(1,1)}|x;θ|x) + Fθ(S{(0,0),(1,1)}|x;θ|x) + Fθ(S{(0,0)}|x;θ|x)

η2(θ;x) = Fθ(S{(1,1)}|x;θ|x) + Fθ(S{(0,0),(1,1)}|x;θ|x)

η3(θ;x) = Fθ(S{(1,1)}|x;θ|x),

and

I1(x; θ) ≡ 1
{
η3(θ;x)/η1(θ;x) ≤ p0,N ((1, 1)|x) ≤ η2(θ;x)/η1(θ;x)

}
I2(x; θ) ≡ 1

{
p0,N ((1, 1)|x) > η2(θ;x)/η1(θ;x)

}
I3(x; θ) ≡ 1

{
p0,N ((1, 1)|x) < η3(θ;x)/η1(θ;x)

}
.

4.2 Heterogeneous Choice Sets

Consider a choice of insurance plans. An individual faces a risk of a loss that occurs with

probability µ ∈ [0, 1]. Insurance plans {1, . . . , J} are available. Each plan is characterized by
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the deductible cj and insurance premium πj and defines a binary lottery Lj = (−πj , 1 −
µ;−πj − cj , µ). Let v(·;U) be the von-Neumann Morgenstern utility function with risk

aversion coefficient U. The risk aversion coefficient is unknown to the econometrician and

is assumed to follow a distribution FU |X,θ. For each j, define

W (Lj ;U) = µv(−πj − cj ;U) + (1− µ)v(−πj ;U). (34)

Each individual chooses a plan that maximizes the expected utility W (·;U) from a choice set

C ⊂ {1, . . . , J}. The observable outcome is the selected plan Y ∈ {1, . . . , J} and individual

characteristics Xj = (cj , πj , µ). These variables can be used to make inference for the risk

preference (Cohen and Einav, 2007; Barseghyan et al., 2011).

The first structure specifies the unobserved choice set’s conditional distribution following

Goeree (2008). Suppose C and U are independent conditional on X. For any K ⊂ {1, . . . , J},
the conditional probability of C = K is

FC|X,θ(K|x) ≡ P (C = K|X = x) =
∏
l∈K

ϕl(x)
∏
k/∈K

(1− ϕk(x)), (35)

where ϕl(x) =
exp(x′γl)

1+exp(x′γl)
is the probability that the individual becomes aware of alternative

l (e.g., thorough advertisement).8 Let

fθ(j|x,K) =

∫
1{W (Lj ;u) > W (Lk;u), ∀k ∈ K, k ̸= j}dFU |X,θ(u) (36)

It represents the conditional probability of the agent choosing plan j ∈ K given (X,C) =

(x,K). Let Cj be the set of all choice sets containing product j. The structure above is

complete and induces the following likelihood function:

q∗θ1,y|x(j|x) =
∑
K∈Cj

∏
l∈K

ϕl(x)
∏
k/∈K

(1− ϕk(x))fθ(j|x,K), j = 1, . . . , J. (37)

In a competing model, we allow C and U to be related arbitrarily. Following Barseghyan

et al. (2021), we assume C contains at least κ elements, which induces (7). In what follows,

we assume there are low, medium, and high deductible plans such that c1 < c2 < c3. A

low deductible means higher coverage since it ensures lower out-of-pocket payments when

a loss occurs. Accordingly, the insurance premia are assumed to satisfy πj = bjπ with

b1 > b2 > b3, where π is an individual-specific base price. Suppose v belongs to the family of

8Goeree (2008) also considers the consumers’ information heterogeneity. Here, we simplify the specification
of ϕl by abstracting from it.
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utility functions with negligible third derivative (NTD), i.e.,

v(w +∆)

v′(w)
− v(w)

v′(w)
= ∆− U

2
∆2. (38)

Then, there exists a threshold τ̄(x) of U at which the individual is indifferent between plans

1 and 3 (Barseghyan et al., 2021). If (and only if) the agent’s risk aversion is below the

threshold, less coverage is always preferred to more coverage for all U , i.e., 3 ≿ 2 ≿ 1. In

contrast, if U ≥ τ̄(x), we have the opposite ordering.

Suppose κ = 2. Then, possible choice sets are {1, 2}, {2, 3}, {1, 3}, and {1, 2, 3}. If

U < τ̄(x), the individual chooses a plan with lower coverage (either plan 2 or 3) depending

on the realization of C. Similarly, if U ≥ τ̄(x), the individual chooses either plan 1 or 2

depending on C. Hence, the model’s prediction is

G(U |X; θ) =

{2, 3} if U < τ̄(X)

{1, 2} if U ≥ τ̄(X).
(39)

Suppose U has the distribution Fθ. Then, the sharp identifying restrictions are9

Q({2, 3}|x) ≥ νθ({2, 3}|x) = Fθ(G(U |X; θ) ⊆ {2, 3}|x) = Fθ(U < τ̄(x)) (40)

Q({1, 2}|x) ≥ νθ({1, 2}|x) = Fθ(G(U |X; θ) ⊆ {1, 2}|x) = Fθ(U ≥ τ̄(x)). (41)

Let η(x; θ) ≡ Fθ(U < τ̄(x)) and p0,j|kl(j|x) =
p0,y|x(j|x)

p0,y|x(k|x)+p0,y|x(l|x)
. Solving the inner optimiza-

tion problem in (16) yields the following profiled-likelihood:

q∗θ2,y|x(1|x) = p0,y|x(1|x)I1(x; θ) + p0,1|12(1|x)η(θ;x)I2(x; θ) + η(θ;x)I3(x; θ) (42)

q∗θ2,y|x(3|x) = p0,y|x(3|x)I1(x; θ) + [1− η(θ;x)]I2(x; θ) + p0,3|23(1|x)[1− η(θ;x)]I3(x; θ), (43)

where

I1(x; θ) ≡ 1
{
p0,y|x(1|x) ≤ η(θ;x) ≤ p0,y|x(1|x) + p0,y|x(2|x)

}
I2(x; θ) ≡ 1

{
η(θ;x) > p0,y|x(1|x) + p0,y|x(2|x)

}
I3(x; θ) ≡ 1

{
p0,y|x(1|x) > η(θ;x)

}
.

9The core determining class for this example is {{2, 3}, {1, 2}} (Barseghyan et al., 2021, Corollary S1.1).
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5 Monte Carlo Experiments

We conduct Monte Carlo experiments to evaluate the size and power of our cross-fit QLR

test. Consider the entry game example. We let X(j) = (1, X
(j)
2 )′, where X

(j)
2 is a player-

specific random variable that is either binary or continuously distributed. Similarly, β(j) =

(β
(j)
1 , β

(j)
2 )′. The payoff of player j is

π(j) = Y (j)(β
(j)
1 + β

(j)
2 X

(j)
2 +∆(j)Y (−j) + U (j)),

where (U (1), U (2)) ∼ N(0, I2). In this example, θ = (∆(1),∆(2), β
(1)
1 , β

(1)
2 , β

(2)
1 , β

(2)
2 )′. We

consider two data generating processes:

• DGP1: X
(j)
2

i.i.d.∼ Bernoulli(0.5).

• DGP2: X
(j)
2

i.i.d.∼ N(0, 1).

The outcomes are generated by the first model (s = 1) with θ0 = (∆(1),∆(2), .5, .5, .5, .5)′,

∆(j) ≤ 0, j = 1, 2. We use a selection mechanism that selects (1, 0) with probability τ = 0.5

whenever the model predicts multiple equilibria. That is, we set p0,y|x to the following:

p0,y|x((0, 0)|x) = qθ0,y|x((0, 0)|x) = [1− Φ(x(1)′β(1))][1− Φ(x(2)′β(2))],

p0,y|x((0, 1)|x) = qθ0,y|x((0, 1)|x) = η11(θ0;x)− qθ0,y|x((1, 0)|x),

p0,y|x((1, 0)|x) = qθ0,y|x((1, 0)|x) = η31(θ0;x) + τ(η21(θ0;x)− η31(θ0;x)),

p0,y|x((1, 1)|x) = qθ0,y|x((1, 1)|x) = Φ(x(1)′β(1) +∆(1))Φ(x(2)′β(2) +∆(2)).

The null hypothesis holds when ∆(1) = ∆(2) = 0. For local alternatives, we consider a

drifting sequence ∆(1) = ∆(2) = −h/
√
n for h ∈ N+. For p̂n,y|x, in DGP1 we use a cell mean

estimator, and in DGP2 we use a sieve Logistic estimator with 3rd-order (tensor product)

Hermite polynomials in (X
(1)
2 , X

(2)
2 ) as sieve basis and L2 penalty. We follow Algorithm 1 to

calculate the cross-fit QLR-test statistic T̂n. We set C = 10.

For comparison, we consider two alternative tests. The first is a cross-fit QLR test without

regularization:

T̃n =
T̃I1 + T̃I2√

2
, where T̃Iℓ =

√
n/2Q̂LRIℓ

σ̂Iℓ(θ̂I−ℓ
)

for ℓ = 1, 2.

The second is the test proposed by Hsu and Shi (2017) (henceforth HS). Their test statistic

is given by

T̂HS
n =

√
nL̂Rn + ω̂nU√

σ̂2
n + ω̂2

n

,
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where L̂Rn is the sample analog of the difference between the average generalized empirical

likelihood (AGEL) distances from the two models to the true DGP, and U ∼ N(0, 1) is

independent of the original sample. Their benchmark data-dependent choice of ω̂n is

ω̂n = (2 + 2 · C2dxt−2
bn

σ̂2
n)

−1

with bn = n/ log(n), tn = n−1/(4dx+2), and C = 5. Since their test is designed for models

defined by conditional moment restrictions with continuous conditioning variables, we focus

on DGP2.

We consider sample sizes n = 1000, 500, 250. We focus on two-sided tests and calculate

rejection probabilities based on 5000 Monte Carlo repetitions. Tables 1–3 and Figure 3

report the results. We observe that for each n, our cross-fit QLR test has the correct size

while the cross-fit QLR test without regularization severely underrejects. The HS test tends

to overreject when the sample size is small (n = 250), although the size distortion appears

to diminish as the sample size increases. As h grows, our cross-fit QLR test has nontrivial

power, almost matching that of the HS test, albeit less than the cross-fit QLR test without

regularization. This power discrepancy becomes more pronounced for larger values of n.

Table 4 reports the average runtime for computing our cross-fit QLR test and the HS test

across different values of h and 5000 Monte Carlo repetitions.10 On average, the HS test takes

about 160 times longer than ours. The computational burden of the HS test arises from the

duality result underlying L̂Rn, which necessitates two nested optimization loops over both

the model parameter and the Lagrange multiplier. Overall, our test has advantages in terms

of small-sample performance and computational costs.

Tests Size Power (values of −h/
√
n below)

-0.032 -0.063 -0.095 -0.126 -0.158 -0.19 -0.221 -0.253 -0.285 -0.316

Panel A: DGP1 (Discrete X)

T̂n 0.045 0.045 0.046 0.048 0.048 0.053 0.062 0.094 0.151 0.259 0.397

T̃n 0.001 0.001 0.007 0.030 0.088 0.231 0.415 0.644 0.833 0.942 0.983

Panel B: DGP2 (Continuous X)

T̂n 0.046 0.045 0.045 0.044 0.049 0.058 0.082 0.129 0.218 0.350 0.535

T̃n 0.000 0.002 0.008 0.028 0.109 0.246 0.477 0.700 0.864 0.952 0.989

T̂HS
n 0.054 0.053 0.054 0.054 0.056 0.062 0.078 0.123 0.203 0.346 0.530

Table 1: Rejection Probabilities (n = 1000)

10The simulations use the replication code of Hsu and Shi (2017) with minimal adaption and are run on the
Boston University Shared Computing Cluster (SCC) with 28 cores.
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Tests Size Power (values of −h/
√
n below)

-0.045 -0.089 -0.134 -0.179 -0.224 -0.268 -0.313 -0.358 -0.402 -0.447

Panel A: DGP1 (Discrete X)

T̂n 0.044 0.047 0.044 0.048 0.051 0.068 0.113 0.203 0.337 0.538 0.711

T̃n 0.001 0.003 0.011 0.039 0.108 0.254 0.465 0.675 0.834 0.941 0.982

Panel B: DGP2 (Continuous X)

T̂n 0.045 0.047 0.045 0.048 0.056 0.086 0.154 0.267 0.453 0.642 0.801

T̃n 0.001 0.001 0.009 0.036 0.121 0.263 0.488 0.705 0.871 0.950 0.983

T̂HS
n 0.057 0.056 0.058 0.061 0.066 0.088 0.147 0.262 0.430 0.609 0.751

Table 2: Rejection Probabilities (n = 500)

Tests Size Power (values of −h/
√
n below)

-0.063 -0.126 -0.19 -0.253 -0.316 -0.379 -0.442 -0.506 -0.569 -0.632

Panel A: DGP1 (Discrete X)

T̂n 0.049 0.048 0.050 0.047 0.066 0.109 0.208 0.375 0.576 0.302 0.408

T̃n 0.002 0.006 0.018 0.050 0.138 0.274 0.473 0.668 0.834 0.401 0.462

Panel B: DGP2 (Continuous X)

T̂n 0.045 0.046 0.049 0.050 0.089 0.153 0.284 0.456 0.654 0.814 0.920

T̃n 0.002 0.003 0.015 0.046 0.148 0.296 0.505 0.700 0.852 0.940 0.980

T̂HS
n 0.090 0.090 0.092 0.095 0.120 0.177 0.289 0.446 0.610 0.765 0.882

Table 3: Rejection Probabilities (n = 250)

6 Concluding remarks

This paper expands the scope of likelihood-based model selection tests to incomplete models.

A novel feature is the use of the profiled likelihood that allows the researcher to compare

parametric discrete choice models regardless of their model completeness or incompleteness.

The proposed QLR statistic is asymptotically normally distributed and provides a tractable,

uniformly valid test to select a parametric model. A Monte Carlo experiment demonstrates

that the proposed test performs well in controlling its size, has competitive power, and offers

computational advantages compared to existing methods.
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Figure 3: Power Curves

T̂n T̂HS
n

n = 1000 0.42 58.60
n = 500 0.39 69.28
n = 250 0.48 79.22

Table 4: Average Runtime (in sec.)
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A Proofs of Theorems 1 and 2

Proof of Theorem 1. For any subsequence of {n}, we modify the definition of I1 and I2

accordingly. It suffices to show that for any subsequence {bn} of {n} and any {Pbn ∈ P0},
there exists a further subsequence {an} of {bn} such that limn→∞EPan

[φan(α)] = α for

φn = φ2-sided
n (α) or φn = φ1-sided

n (α). Fix ℓ ∈ {1, 2}. By the completeness of the real line,

there is always a subsequence {an} of {bn} such that σPan
(θ∗(θ̂I−ℓ

, , Pan))
p→ σ∞ ∈ [0,∞).

By Lemmas 3 and 4,√
an/2(Q̂LRIℓ

−QLRPan
)

= op(1) + (an/2)
−1/2

∑
i∈Iℓ

(λθ∗(θ̂I−ℓ
,Pan )

(Yi|Xi; pan,y|x)− EPan
[λθ∗(θ̂I−ℓ

,Pan )
(Y |X; pan,y|x)])

= op(1) + σPan
(θ∗(θ̂I−ℓ

, Pan)) · (Zℓ + op(1))

= σPan
(θ∗(θ̂I−ℓ

, Pan)) · Zℓ + op(1). (44)

We consider two cases.

Case 1: σ∞ = 0. By Lemma 5, σ̂2
Iℓ
(θ̂I−ℓ

) = σ2
Pan

(θ∗(θ̂I−ℓ
, Pan)) + op(1) = op(1). Then, by

(44),
√

an/2Q̂LRIℓ
= op(1) ·Op(1) + op(1) = op(1). By Condition 1(a), we have

T̂Iℓ =

√
an/2Q̂LRIℓ

+ ω̂IℓUℓ√
σ̂2
Iℓ
(θ̂I−ℓ

) + ω̂2
Iℓ

=

√
an/2Q̂LRIℓ

/ω̂Iℓ + Uℓ√
(σ̂Iℓ(θ̂I−ℓ

)/ω̂Iℓ)
2 + 1

=
op(1) + Uℓ√
op(1) + 1

= Uℓ + op(1).

Case 2: σ∞ > 0. By Lemma 5,

σ̂2
Iℓ
(θ̂I−ℓ

)

σ2
Pan

(θ∗(θ̂I−ℓ
, Pan))

= 1 +
σ̂2
Iℓ
(θ̂I−ℓ

)− σ2
Pan

(θ∗(θ̂I−ℓ
, Pan))

σ2
Pan

(θ∗(θ̂I−ℓ
, Pan))

= 1 + op(1).

Then, by (44) and Condition 1(b),

T̂Iℓ =

√
an/2Q̂LRIℓ

+ ω̂IℓUℓ√
σ̂2
Iℓ
(θ̂I−ℓ

) + ω̂2
Iℓ

=

√
an/2Q̂LRIℓ

/σPan
(θ∗(θ̂I−ℓ

, Pan)) + ω̂Iℓ/σPan
(θ∗(θ̂I−ℓ

, Pan)) · Uℓ√
σ̂2
Iℓ
(θ̂I−ℓ

)/σ2
Pan

(θ∗(θ̂I−ℓ
, Pan)) + (ω̂Iℓ/σPan

(θ∗(θ̂I−ℓ
, Pan)))

2

=
Zℓ + op(1)√
1 + op(1)

= Zℓ + op(1).
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Now, we add ℓ-superscripts to an and redefine {an} = ∪2
ℓ=1{aℓn}. Then, we can conclude that

in all cases T̂an
d→ N(0, 1) and the desired result follows.

Proof of Theorem 2. Let {bn} be a subsequence of {n} such that

lim
n→∞

EPbn
[φbn(α)] = lim inf

n→∞
EPn [φn(α)]

for φn = φ2-sided
n or φn = φ1-sided

n . Fix ℓ ∈ {1, 2}. We focus on the subsequence {an} of {bn}
defined in the proof of Theorem 1 and consider two cases.

Case 1: σ∞ = 0. By Lemma 5, σ̂2
Iℓ
(θ̂I−ℓ

) = op(1). Then, by (44) and Condition 1(a),

T̂Iℓ =

√
an/2Q̂LRIℓ

+ ω̂IℓUℓ√
σ̂2
Iℓ
(θ̂I−ℓ

) + ω̂2
Iℓ

=

√
an/2(Q̂LRIℓ

−QLRPan
)/ω̂Iℓ + Uℓ +

√
an/2QLRPan

/ω̂Iℓ√
(σ̂Iℓ(θ̂I−ℓ

)/ω̂Iℓ)
2 + 1

=
op(1) + Uℓ + h/(

√
2ω∞)√

op(1) + 1

= Uℓ + h/(
√
2ω∞) + op(1).

Case 2: σ∞ > 0. By Lemma 5, σ̂2
Iℓ
(θ̂I−ℓ

)/σ2
Pan

(θ∗(θ̂I−ℓ
, Pan)) = 1 + op(1). Then, by (44) and

Condition 1(b),

T̂Iℓ =

√
an/2Q̂LRIℓ

+ ω̂IℓUℓ√
σ̂2
Iℓ
(θ̂I−ℓ

) + ω̂2
Iℓ

=

√
an/2(Q̂LRIℓ

−QLRPan
)/σPan

(θ∗(θ̂I−ℓ
, Pan)) + ω̂Iℓ/σPan

(θ∗(θ̂I−ℓ
, Pan)) · Uℓ√

σ̂2
Iℓ
(θ̂I−ℓ

)/σ2
Pan

(θ∗(θ̂I−ℓ
, Pan)) + (ω̂Iℓ/σPan

(θ∗(θ̂I−ℓ
, Pan)))

2

+

√
an/2QLRPan√
σ̂2
Iℓ
(θ̂I−ℓ

) + ω̂2
Iℓ

=
Zℓ + op(1)√
1 + op(1)

+
h/

√
2√

σ2
∞ + op(1)

+ op(1)

= Zℓ + h/(
√
2σ∞) + op(1).

Now, we add ℓ-superscripts to an and redefine {an} = ∪2
ℓ=1{aℓn}. Let Z be an auxiliary
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random variable drawn from N(0, 1). Then, we can conclude that in all cases,

lim
n→∞

EPan
[ϕ2-sided

an (α)] = lim
n→∞

PrPan
(|T̂an | > z1−α/2)

≥ Pr(|Z + h/(ω∞ ∨ σ∞)| > z1−α/2)

= 1− Φ(z1−α/2 − h/(ω∞ ∨ σ∞)) + Φ(−z1−α/2 − h/(ω∞ ∨ σ∞)),

lim
n→∞

EPan
[ϕ1-sided

an (α)] = lim
n→∞

PrPan
(T̂an > z1−α)

≥ Pr(Z + h/(ω∞ ∨ σ∞) > z1−α)

= 1− Φ(z1−α − h/(ω∞ ∨ σ∞)).

Therefore, the desired result follows.

B Auxiliary Lemmas and their proofs

Lemma 1: Suppose that Assumption 2 holds. Then, for each s ∈ {0, 1}, (i) L(x, θs, py|x) is
differentiable with respect to θs; (ii) for any θs ∈ Θs and py|x, p̃y|x ∈ H, py|x 7→ L(x, θs, py|x)

is directionally differentiable at py|x, and the directional derivative at py|x in the direction

p̃y|x(y|x)− py|x(y|x) is given by

D(x, θs, py|x, p̃y|x − py|x) =
∑
y∈Y

(p̃y|x(y|x)− py|x(y|x)) ln q∗θs,y|x(y|x; py|x).

Proof of Lemma 1. For part (i), note that by definition,

L(x, θs, py|x) = max
q∈∆

∑
y∈Y

py|x(y|x) ln q(y) (45)

s.t. νθs(A|x) ≤
∑
y∈A

q(y), A ∈ C.

Hence, the desired result follows from Theorem 3.1(i) of Kaido and Molinari (2022) by re-

placing p0,y|x with py|x. Part (ii) follows from Theorem 4.1 of Fiacco and Ishizuka (1990) by

noting that (45) has a unique solution q∗θs,y|x(·|x; py|x).

Lemma 2: Suppose that Assumptions 1–4 hold. Then, for each s, ℓ ∈ {1, 2}, if θ̂s,Iℓ
approximately solves the first-order conditions: 2

n

∑
i∈Iℓ m(Xi, θ̂s,Iℓ , p̂Iℓ,y|x) = op(n

−dp), then

d(θ̂s,Iℓ ,Θ
∗
s(P0)) = Op(n

−dp).

Proof of Lemma 2. We omit s-subscripts and the sample-splitting feature for readability.

Define Qn(θ) ≡ 1
n

∑n
i=1m(Xi, θ, p̂n,y|x). For each ϵ > 0, define the ϵ-expansion of Θ∗(P0) in
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Θ by Θϵ(P0) ≡ {θ ∈ Θ : d(θ,Θ∗(P0)) ≤ ϵ}. For the desired result, it suffices to show that for

some ϵn = O(n−dp) with ϵn > 0, θ̂n ∈ Θϵn(P0) with probability approaching 1. On one hand,

we can write

ndpQn(θ) = ndpEP0 [m(X, θ, p0,y|x)] + ndp−1/2Gn(m(·, θ, p̂n,y|x))

+ ndp(EP0 [m(X, θ, p̂n,y|x)]− EP0 [m(X, θ, p0,y|x)]).

By Assumption 3(b), Gn(m(·, θ, p̂n,y|x)) = Op(1). By Assumptions 3(c) and 4, EP0 [m(X, θ, p̂n,y|x)]−
EP0 [m(X, θ, p0,y|x)] = Op(n

−dp). Hence, by Assumption 3(a),

∥ndpQn(θ)∥ = C · ndp(d(θ,Θ∗(P0)) ∧ δ) +Op(1).

Namely, for any ε > 0, there exist M > 0 and nε > 0 such that for all n ≥ nε,

P (∥ndpQn(θ)∥ − C · ndp(d(θ,Θ∗(P0)) ∧ δ) ≥ −M) ≥ 1− ε.

Further, there exists nδ > nε > 0 such that for all n ≥ nδ,
1
2C ·ndpδ ≥ M . Also note that for

any θ ∈ Θ satisfying d(θ,Θ∗(P0)) ≥ 2M
ndpC

, 1
2C · ndpd(θ,Θ∗(P0)) ≥ M . It follows that for all

n ≥ nδ,

P
(
∥ndpQn(θ)∥ ≥ 1

2
C · ndp(d(θ,Θ∗(P0)) ∧ δ)

)
≥ 1− ε

uniformly in {θ ∈ Θ : d(θ,Θ∗(P0)) ≥ 2M
ndpC

}. On the other hand, ∥ndpQn(θ̂n)∥ = op(1). Hence,

for any ε > 0, there exists n′
ε > 0 such that for all n ≥ n′

ε, P (∥ndpQn(θ̂n)∥ ≤ M) ≥ 1 − ε.

Let ϵn = 2M
ndpC

and n̄ = nδ ∨n′
ε. We can conclude that for all n ≥ n̄, with probability at least

1−2ε, infθ∈Θ\Θϵn (P0) ∥ndpQn(θ)∥ ≥ 1
2C ·ndp(ϵn∧δ) = 1

2C ·ndpϵn = M and ∥ndpQn(θ̂n)∥ ≤ M .

Therefore, θ̂n ∈ Θϵn(P0) with probability approaching 1.

Lemma 3: Suppose Assumptions 1–5 hold. Then for each s, ℓ ∈ {1, 2},

(n/2)−1/2
∑
i∈Iℓ

L(Xi, θ̂s,I−ℓ
, p̂Iℓ,y|x) = (n/2)−1/2

∑
i∈Iℓ

ln q∗
θ∗s (θ̂s,I−ℓ

,P0),y|x
(Yi|Xi; p0,y|x) + op(1).

Proof of Lemma 3. We omit s-subscripts and the sample-splitting feature for readability.
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Write

1√
n

n∑
i=1

L(Xi, θ̂n, p̂n,y|x)−
1√
n

n∑
i=1

ln q∗
θ∗(θ̂n,P0),y|x

(Yi|Xi; p0,y|x)

= Gn(L(·, θ̂n, p̂n,y|x)− L(·, θ∗(θ̂n, P0), p0,y|x))

+
√
n(EP0 [L(X, θ̂n, p̂n,y|x)]− EP0 [L(X, θ∗(θ̂n, P0), p0,y|x)])

+
1√
n

n∑
i=1

(L(Xi, θ
∗(θ̂n, P0), p0,y|x))− ln q∗

θ∗(θ̂n,P0),y|x
(Yi|Xi; p0,y|x)).

We examine each term on the right-hand side. First, by the mean value theorem and As-

sumption 5(a), for any θ, θ̃ ∈ Θ and py|x, p̃y|x ∈ H,

|L(x, θ, py|x)− L(x, θ̃, p̃y|x)| ≤ B(x)(∥θ − θ̃∥+ ∥py|x − p̃y|x∥H).

Hence, by Assumption 5(b), we can apply Theorem 3 of Chen et al. (2003) to show that the

empirical process Gn(L(·, θs, py|x)) indexed by θs and py|x is stochastically equicontinuous:

for all sequences of positive numbers {δn} with δn = o(1),

sup
∥θ̃s−θs∥+∥p̃y|x−py|x∥H≤δn

|Gn(L(·, θ̃s, p̃y|x)− L(·, θs, py|x))| = op(1).

By Lemma 2, ∥θ̂n − θ∗(θ̂n, P0)∥ = Op(n
−dp). Hence, for all δn = o(1), ∥θ̂n − θ∗(θ̂n, P0)∥ ≤ δn

with probability approaching 1. Similarly, by Assumption 4, ∥p̂n,y|x − p0,y|x∥H ≤ δn with

probability approaching 1. Therefore,

Gn(L(·, θ̂n, p̂n,y|x)− L(·, θ∗(θ̂n, P0), p0,y|x)) = op(1).

Second, we can write

√
n(EP0 [L(X, θ̂n, p̂n,y|x)]− EP0 [L(X, θ∗(θ̂n, P0), p0,y|x)])

=
√
n(θ̂n − θ∗(θ̂n, P0))

′EP0 [m(X, θ∗(θ̂n, P0), p0,y|x)]

+
√
nEP0 [D(X, θ∗(θ̂n, P0), p0,y|x, p̂n,y|x − p0,y|x)] +

√
nEP0 [r(X, θ̂n, p̂n,y|x)],

where r(x, θ, py|x) ≡ L(x, θ, py|x)−L(x, θ∗(θ, P0), p0,y|x)−(θ−θ∗(θ, P0))
′m(x, θ∗(θ, P0), p0,y|x)−

D(x, θ∗(θ, P0), p0,y|x, py|x − p0,y|x). By the first-order conditions for Θ∗(P0),

EP0 [m(X, θ∗(θ̂n, P0), p0,y|x)] = 0.
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By Jensen’s inequality, Lemma 2, and Assumptions 4 and 5(a),

√
n|EP0 [r(X, θ̂n, p̂n,y|x)]| ≤

√
nEP0 [|r(X, θ̂n, p̂n,y|x)|]

≤ E[B(X)]
√
n(∥θ̂n − θ∗(θ̂n, P0)∥2 + ∥p̂n,y|x − p0,y|x∥2H) = op(1).

Therefore,

√
n(EP0 [L(X, θ̂n, p̂n,y|x)]− EP0 [L(X, θ∗(θ̂n, P0), p0,y|x)])

=
√
nEP0 [D(X, θ∗(θ̂n, P0), p0,y|x, p̂n,y|x − p0,y|x)] + op(1).

Third, we can write

1√
n

n∑
i=1

(L(Xi, θ
∗(θ̂n, P0), p0,y|x))− ln q∗

θ∗(θ̂n,P0),y|x
(Yi|Xi; p0,y|x)) = − 1√

n

n∑
i=1

α(Yi, Xi),

where α(y, x) is defined in Assumption 5(c). Putting everything together, we have

1√
n

n∑
i=1

L(Xi, θ̂n, p̂n,y|x)−
1√
n

n∑
i=1

ln q∗
θ∗(θ̂n,P0),y|x

(Yi|Xi; p0,y|x)

=
√
nEP0 [D(X, θ∗(θ̂n, P0), p0,y|x, p̂n,y|x − p0,y|x)]−

1√
n

n∑
i=1

α(Yi, Xi) + op(1),

and the desired result follows from Assumption 5(c).

Lemma 4: Suppose Assumptions 1–6 hold. Then for each ℓ ∈ {1, 2} and any sequence

{Pn ∈ P},

(n/2)−1/2
∑
i∈Iℓ

λθ∗(θ̂I−ℓ
,Pn)

(Yi|Xi; pn,y|x)− EPn [λθ∗(θ̂I−ℓ
,Pn)

(Y |X; pn,y|x)]

σPn(θ
∗(θ̂I−ℓ

, Pn))
= Zℓ + op(1),

where Zℓ ∼ N(0, 1) and Z1 and Z2 are independent.

Proof of Lemma 4. Fix ℓ ∈ {1, 2}. Define the triangular array

Zni =
λθ∗(θ̂I−ℓ

,Pn)
(Yi|Xi; pn,y|x)− EPn [λθ∗(θ̂I−ℓ

,Pn)
(Y |X; pn,y|x)]√

n/2σPn(θ
∗(θ̂I−ℓ

, Pn))
, n ∈ N+, i ∈ Iℓ,
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so that we can write

(n/2)−1/2
∑
i∈Iℓ

λθ∗(θ̂I−ℓ
,Pn)

(Yi|Xi; pn,y|x)− EPn [λθ∗(θ̂I−ℓ
,Pn)

(Y |X; pn,y|x)]

σPn(θ
∗(θ̂I−ℓ

, Pn))
=

∑
i∈Iℓ

Zni.

We verify the Lyapounov condition for {Zni : n ∈ N+, i ∈ Iℓ}. For any ϵ > 0 and n ∈ N+,

∑
i∈Iℓ

EPn [|Zni|2+ϵ|θ̂I−ℓ
] =

∑
i∈Iℓ EPn [|λθ∗(θ̂I−ℓ

,Pn)
(Yi|Xi; pn,y|x)− EPn [λθ∗(θ̂I−ℓ

,Pn)
(Y |X; pn,y|x)]|2+ϵ|θ̂I−ℓ

]

(
√
n/2σPn(θ

∗(θ̂I−ℓ
, Pn)))2+ϵ

≤
(n/2)EPn [|D(Y,X)σPn(θ

∗(θ̂I−ℓ
, Pn))|2+ϵ]

(
√
n/2σPn(θ

∗(θ̂I−ℓ
, Pn)))2+ϵ

= (n/2)−ϵ/2EPn [|D(Y,X)|2+ϵ],

where the inequality follows from the independence between I1 and I2 and Assumption

6. Hence, there exist M, ϵ > 0 such that for each n ∈ N+,
∑

i∈Iℓ EPn [|Zni|2+ϵ|θ̂I−ℓ
] ≤

(n/2)−ϵ/2M . By the law of iterated expectations, the Lyapounov condition holds:∑
i∈Iℓ

EPn [|Zni|2+ϵ] ≤ (n/2)−ϵ/2M → 0.

Then, we can apply Lyapounov’s Central Limit Theorem to obtain
∑

i∈Iℓ Zni
d→ N(0, 1). By

Skorohod’s representation theorem and Lemma 9 of Chernozhukov et al. (2013), if we enrich

the original probability space (Ω,B, P ) by creating a new space as the product of (Ω,B, P )

and ([0, 1],F , λ), where F is the Borel sigma algebra on [0, 1] and λ is the Lebesgue measure,

we have ∑
i∈Iℓ

Zni = Zℓ + op(1),

where Zℓ ∼ N(0, 1) is independent of
∑

i∈Iℓ Zni. It follows that Z1 and Z2 are independent.

Lemma 5: Suppose Assumptions 1–7 hold. Then for each ℓ ∈ {1, 2},

σ̂2
Iℓ
(θ̂I−ℓ

)− σ2
P0
(θ∗(θ̂I−ℓ

, P0)) = Op(n
−dp).
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Proof of Lemma 5. We omit the sample-splitting feature for readability. Define

V (θ, py|x) = EP0 [λ
2
θ(Y |X; py|x)]− EP0 [λθ(Y |X; py|x)]

2,

Vn(θ, py|x) =
1

n

n∑
i=1

λθ(Yi|Xi; py|x)−
( 1

n

n∑
i=1

λθ(Yi|Xi; py|x)
)2

.

We can write

(σ̂n(θ̂n))
2 − σ2

P0
(θ∗(θ̂n, P0)) = (Vn(θ̂n, p̂n,y|x)− V (θ̂n, p̂n,y|x))

+ (V (θ̂n, p̂n,y|x)− V (θ∗(θ̂n, P0), p0,y|x)).

We examine each term on the right-hand side. First, by Assumption 7(b),

Vn(θ̂n, p̂n,y|x)− V (θ̂n, p̂n,y|x) = n−1/2Gn(λ
2
θ̂n
(·|·; p̂n,y|x))− n−1/2Gn(λθ̂n

(·|·; p̂n,y|x))

× (2EP0 [λθ̂n
(Y |X; p̂n,y|x)] + n−1/2Gn(λθ̂n

(·|·; p̂n,y|x)))

= Op(n
−1/2)−Op(n

−1/2) · (Op(1) +Op(n
−1/2))

= Op(n
−1/2).

Second, by the triangle inequality and Jensen’s inequality,

|V (θ̂n, p̂n,y|x)− V (θ∗(θ̂n, P0), p0,y|x)| ≤ |EP0 [λ
2
θ̂n
(Y |X; p̂n,y|x)]− EP0 [λ

2
θ∗(θ̂n,P0)

(Y |X; p0,y|x)]|

+ 2|EP0 [λθ̂n
(Y |X; p̂n,y|x)]− EP0 [λθ∗(θ̂n,P0)

(Y |X; p0,y|x)]|

×
( 2∑

s=1

sup
θs∈Θs,py|x∈H

EP0 [| ln q∗θs,y|x(Y |X; py|x)|]
)
.

By Lemma 2 and Assumptions 4 and 7(c), |EP0 [λ
k
θ̂n
(Y |X; p̂n,y|x)]−EP0 [λ

k
θ∗(θ̂n,P0)

(Y |X; p0,y|x)]| =
Op(n

−dp), k = 1, 2. By Assumption 7(a), supθs∈Θs,py|x∈HEP0 [| ln q∗θs,y|x(Y |X; py|x)|] = Op(1)

for each s ∈ {1, 2}. It follows that

|V (θ̂n, p̂n,y|x)− V (θ∗(θ̂n, P0), p0,y|x)| ≤ Op(n
−dp) +Op(n

−dp) ·Op(1) = Op(n
−dp).

Putting everything together yields the desired result.

Lemma 6: Suppose that Assumptions 1–7 hold. Then, for each ℓ ∈ {1, 2}, ω̂Iℓ defined in

(20) satisfies Condition 1.

Proof of Lemma 6. Fix ℓ ∈ {1, 2}. To check Condition 1(a), note that by Lemma 5, σ̂2
Iℓ
(θ̂I−ℓ

) =
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σ2
Pn

(θ∗(θ̂I−ℓ
, Pn)) + [σ̂2

Iℓ
(θ̂I−ℓ

) − σ2
Pn

(θ∗(θ̂I−ℓ
, Pn))] = Op(n

−dσ) + Op(n
−dp) = op((lnn)

−1).

Hence, ω̂Iℓ
p→ 1. To check Condition 1(b), note that by Lemma 5, σ̂2

Iℓ
(θ̂I−ℓ

) = σ2
∞ + op(1).

Hence, ω̂Iℓ
p→ 0.
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