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Abstract

This paper studies robust counterfactual analysis in a wide variety of nonlinear panel data

models. I focus on counterfactual predictions of the behavior of an outcome variable under

exogenous manipulations of endogenous explanatory variables. I avoid parametric distributional

assumptions and only impose time homogeneity on the distribution of unobserved heterogeneity.

I derive the sharp identified set for the distribution of the counterfactual outcome, noting that

point identification is impossible in general. I provide tractable implementation procedures for

popular nonlinear models, including binary choice, ordered choice, censored regression, and

multinomial choice, by exploiting an index separability condition. I propose inference for sharp

bounds on counterfactual probabilities based on aggregate intersection bounds and Bonferroni-

adjusted confidence intervals. As empirical illustrations, I apply my approach to actual data to

predict female labor force participation rates under counterfactual fertility scenarios, as well as

market shares of different saltine cracker brands under counterfactual pricing schemes.
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1 Introduction

A frequent goal in empirical research is to predict the counterfactual behavior of an outcome

variable under ceteris paribus manipulations of endogenous explanatory variables. For instance,

the policymaker may want to predict the counterfactual probability of a woman participating in

the labor force if her fertility and husband’s income were externally set at some values. This is

an important policy question related to offering and subsidizing child care. It has been common

practice in this context to use a threshold-crossing model where the latent index is a function

of explanatory variables, including fertility and husband’s income, and unobserved heterogeneity.

Unobserved heterogeneity enters the outcome equation in a non-additive manner and can depend on

latent factors determining fertility and husband’s income, such as household productivity and access

to job networks. As a result, predicting the counterfactual female labor participation rate requires

knowledge of not only index coefficients but also the distribution of unobserved heterogeneity.

Panel data offers the possibility of controlling for unobserved heterogeneity by utilizing multiple

observations of a single economic unit over time. This possibility extends to nonlinear models,

which naturally arise in the context of discrete outcomes. Since the seminal work of Manski (1987),

the literature on semiparametric nonlinear panel data models has developed methods to identify

structural parameters, such as index coefficients, which are insufficient for making counterfactual

predictions. What has been missing is a framework to systematically quantify what can be learned

about the distribution of unobserved heterogeneity. This paper aims to fill this gap.

This paper develops a method for robust counterfactual analysis in nonlinear panel data models.

The only restriction imposed on the distribution of unobserved heterogeneity is time homogeneity,

which can be interpreted as “time is randomly assigned” or “time is an instrument” (Chernozhukov,

Fernández-Val, Hahn, and Newey, 2013) and formally justifies combining information from an

individual’s observations over time. At the same time, this assumption is general enough to allow for

flexible dependence between unobserved heterogeneity and explanatory variables. I note that when

the outcome distribution exhibits mass points (e.g., discrete or mixed), it is generally impossible

to point identify both structural parameters and the distribution of the counterfactual outcome

without further assumptions. Therefore, I focus on cases where structural parameters are point-

identified and derive the sharp identified set for the distribution of the counterfactual outcome.

The main idea of identification is to collect all values of unobserved heterogeneity for which

outcomes are identical into what I refer to as “U -level sets.” Identified sets of counterfactuals
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defined through U -level sets are guaranteed to be sharp, i.e., they use all available information. The

time homogeneity assumption simplifies the sharp identified set as intersections across time periods.

Nonetheless, calculating the sharp identified set can still be challenging because it involves searching

over all distributions of unobserved heterogeneity. I provide tractable implementation procedures

that bypass this search for two important classes of nonlinear models: monotone transformation

models, such as binary choice, ordered choice, censored regression, and multinomial choice models.

To this end, I exploit an index separability condition that connects the comparison of index functions

of explanatory variables under factual and counterfactual scenarios to the set inclusion relationship

of U -level sets, which can be translated into the comparison of the distributions of observed and

counterfactual outcomes. In this way, I generate identifying restrictions on the distribution of the

counterfactual outcome directly from observed data. While my baseline framework focuses on static

settings, I also consider an extension of my identification strategy to dynamic binary choice models.

When it comes to estimation and inference, I target summary measures of the distribution of

the counterfactual outcome in the spirit of the average structural function introduced in Blundell

and Powell (2003, 2004), which are typically counterfactual probabilities for discrete outcomes.

Sharp bounds on counterfactual probabilities take the form of aggregate intersection bounds (cf.

Semenova (2024)). Inference poses a challenge due to the uncertainty in structural parameters. I

propose a two-step procedure. In the first step, a confidence region for structural parameters is

constructed. In the second step, for each value of structural parameters, I provide conditions for

the pointwise asymptotic normality of the estimator for aggregate intersection bounds, giving rise

to simple pointwise confidence intervals for counterfactual probabilities. I combine these two steps

using a Bonferroni adjustment.

As an empirical illustration, I apply my approach to U.S. and U.K. data to predict female labor

force participation rates under counterfactual fertility scenarios. The bounds reveal a common

pattern in both samples: having one more infant or preschooler decreases labor force participation,

while the effect of one more school-age child is ambiguous. I also demonstrate the application of my

approach in multinomial choice models to predict market shares of different saltine cracker brands

under counterfactual pricing schemes.

This paper contributes to three strands of literature. First, there is a growing literature on

semiparametric identification of nonlinear panel data models, including Manski (1987), Honoré and

Kyriazidou (2000), Khan, Ponomareva, and Tamer (2016, 2023), Shi, Shum, and Song (2018), Gao
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and Li (2020), Khan, Ouyang, and Tamer (2021), Botosaru, Muris, and Pendakur (2023), Chesher,

Rosen, and Zhang (2024), Gao and Wang (2024), Pakes and Porter (2024). It is well known that

structural parameters, such as index coefficients, can be identified under time homogeneity, but

little is known about how to identify counterfactuals, which also require the full distribution of

unobserved heterogeneity. I take a step forward to bound counterfactuals under these assumptions.

The framework of Chesher et al. (2024) potentially permits counterfactual analysis. They impose

a fixed effects structure on unobserved heterogeneity while leaving the distribution of fixed effects

completely unrestricted. As a result, their approach cannot predict the counterfactual probability

in a single period, which is my focus, because fixed effects can be arbitrarily moved to justify any

outcome. When specialized to multinomial choice models, set inclusion relationships of U -level sets

also underlie the identification strategy of Pakes and Porter (2024). They focus on deriving sharp

identifying restrictions on structural parameters in the case with only two time periods. In contrast,

my object of interest is counterfactuals, and my sharpness results apply to longer panels.

Second, this paper complements the literature on identification of counterfactuals in discrete

outcome models, including Manski (2007), Chiong, Hsieh, and Shum (2021), Gu, Russell, and

Stringham (2024), Tebaldi, Torgovitsky, and Yang (2023). Manski (2007) focused on counterfactual

scenarios concerning unrealized choice sets. Chiong et al. (2021) assumed exogeneity of product-

specific attributes and proposed using cyclic monotonicity to bound counterfactual market shares

under changes in these attributes. Tebaldi et al. (2023) restricted explanatory variables to be finitely

supported. In this case, searching over latent distributions reduces to a finite-dimensional problem

characterized by a finite partition of the space of unobserved heterogeneity, termed the minimal

relevant partition. Gu et al. (2024) extended this insight to account for model misspecification and

model incompleteness. An obvious feature of my approach is that I exploit the panel data structure.

Moreover, I allow explanatory variables to be both endogenous and continuous.

Third, this paper adds to the literature on identification of counterfactuals in nonlinear panel

data models, including Hoderlein and White (2012), Chernozhukov et al. (2013), Chernozhukov,

Fernández-Val, and Newey (2019), Liu, Poirier, and Shiu (2021), Davezies, D’Haultfoeuille, and

Laage (2022), Botosaru and Muris (2024), Pakel and Weidner (2024). The identification results

of Hoderlein and White (2012) and Chernozhukov et al. (2019) are confined to the subpopulation

of “stayers”, i.e., the population for which explanatory variables do not change over time. Cher-

nozhukov et al. (2013) only considered finitely supported explanatory variables. By comparison, I
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handle counterfactuals that are averaged over the whole population and continuous explanatory

variables. Liu et al. (2021) concentrated on binary choice models and achieved point identification

of average effects by imposing index sufficiency on the distribution of fixed effects. Davezies et al.

(2022) and Pakel and Weidner (2024) did not restrict the distribution of fixed effects but relied

on parametric distributional assumptions on idiosyncratic shocks (e.g., fixed effects logit). They

provided bounds on average effects. Botosaru and Muris (2024) derived bounds on counterfactual

survival probabilities in monotone transformation models. My results differ in that I work with

weaker assumptions and cover a relatively wide variety of nonlinear models.

The remainder of this paper is organized as follows. Section 2 outlines the setup and specifies

the type of counterfactuals under consideration. Section 3 presents the sharp identified set for the

distribution of the counterfactual outcome. Section 4 discusses the tractable implementation of the

sharp identified set. Section 5 addresses estimation and inference. Section 6 gives numerical results

for the sharp identified set. Section 7 contains empirical illustrations using data on female labor force

participation and purchases of saltine crackers. Section 8 explores the extension to dynamic binary

choice models. Section 9 concludes. Proofs and simulation results are collected in the Appendix.

2 Setup

This paper considers panel data models of the form:

Yit = g(Xit, Uit; θ0), i = 1, . . . , N, t = 1, . . . , T,

where Yit ∈ Y ⊆ R denotes an observed scalar outcome, Xit ∈ X ⊆ Rdx denotes explanatory

variables, Uit ∈ Rdu denotes unobserved heterogeneity, and g is a function known up to a finite-

dimensional parameter θ0. Write Xi = (Xi1, . . . , XiT ). Throughout, I assume that the data are

independent and identically distributed (i.i.d.) across i. For the identification analysis in Sections

3, 4, and 8, I drop the i subscript to simplify the notation.

Example 1 (Binary choice model). Consider the model

Yit = 1{X⊤
it β0 + Uit ≥ 0},

where β0 ∈ Rdx is a vector of unknown coefficients. Here θ0 = β0 and Y = {0, 1}.
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Example 2 (Ordered choice model). Consider the model

Yit =
J∑

j=0

1{X⊤
it β0 + Uit ≥ γj0},

where β0 ∈ Rdx is a vector of unknown coefficients, and γ0 = (γ00 , γ
1
0 , . . . , γ

J
0 ) are unknown thresholds

satisfying γj0 > γj−1
0 and γ00 = −∞. Here θ0 = (β0, γ0) and Y = {0, 1, . . . , J}. When J = 1, the

model reduces to Example 1.

Example 3 (Censored regression model). Consider the model

Yit = max{0, X⊤
it β0 + Uit},

where β0 ∈ Rdx is a vector of unknown coefficients. Here θ0 = β0 and Y = [0,∞).

Example 4 (Multinomial choice model). Suppose that Y = {0, 1, . . . , J}, and Xit and Uit consist

of alternative-specific components:

Xit = (X0it, X1it, . . . , XJit), Uit = (U0it, U1it, . . . , UJit),

where for each j, Xjit ∈ Rk and Ujit ∈ R. Consider the model

Yit = argmax
j

(X⊤
jitβ0 + Ujit),

where β0 ∈ Rk is a vector of unknown coefficients. Here θ0 = β0. Note that the normalization

X̃jit = Xjit − X0it, Ũjit = Ujit − U0it ∀j does not change outcomes. When J = 1, the model also

reduces to Example 1.

Assumption 1 (Time Homogeneity). Uit
d
= Ui1|Xi for all t.

Assumption 1 requires that the conditional distribution of Uit given Xi does not depend on t.

It is termed time homogeneity in Chernozhukov et al. (2013) and has been commonly imposed for

semiparametric or nonparametric identification of nonlinear panel data models since its introduction

by Manski (1987). A sufficient condition is that Uit has an error component structure: Uit = Ai+Vit,

where Vit
d
= Vi1|Xi, Ai for all t, and Ai is a time-invariant individual effect. It is worth noting that

Assumption 1 excludes lagged Yit from Xit and focuses on static models. On the other hand,
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Assumption 1 allows Uit to be correlated with Xi and dependent over time. Moreover, it places no

parametric distributional restriction on Uit.

Assumption 2. θ0 is known or point-identified.

Assumption 2 is satisfied for a broad class of structural functions g under Assumption 1 and rich

support conditions for Uit and Xi. In particular, it holds for all the examples mentioned above. For

Example 1, Manski (1987) showed the identification of β0 up to scale. For Example 2, Botosaru et al.

(2023) showed the identification of β0 and γ0 up to location and scale normalization by converting

the model into a collection of binary choice models via binarization and invoking Manski (1987).

For Example 3, Honoré and Kyriazidou (2000) showed the identification of β0. For Example 4,

point identification of θ0 up to scale is established in Shi et al. (2018) and Khan et al. (2021). Shi

et al. (2018) exploited the cyclic monotonicity property of the choice probability vector. Khan et al.

(2021) utilized the subsample of observations in which covariates for all alternatives but one are

fixed over time to construct a localized rank-based objective function analogous to Manski (1987).

Notably, a common structure is exploited by the identification argument of θ0 across these examples:

Yit depends on Xit and Uit through latent indices X⊤
it β0+Uit or {X⊤

jitβ0+Ujit}Jj=0. This structure

will also be useful for the tractable implementation of sharp identified sets of counterfactuals in

Section 4. However, it is not used in deriving sharp identified sets of counterfactuals in Section 3. In

other words, results in Section 3 apply to more general settings that do not require this structure.

Counterfactual Predictions Fixing a counterfactual value x for Xit, the object of interest is

the distribution of the counterfactual outcome Yit(x) = g(x, Uit; θ0). This can be understood as the

result of an intervention that exogenously sets the value of Xit to x, without altering the structural

function g(·; θ0) or the distribution of Uit. Summary measures of the distribution of Yit(x) can be

formed in the spirit of the average structural function introduced in Blundell and Powell (2003,

2004). In Examples 2 and 3, one may consider the counterfactual survival probability Pr(Yit(x) ≥ y)

for y ∈ Y \ inf Y. In Example 4, one may consider the counterfactual choice probability Pr(Yit(x) =

y) for y ∈ Y. These counterfactual probabilities are important parameters per se in evaluating

the impact of counterfactual interventions. Moreover, they can serve as building blocks for various

welfare measures. For example, Bhattacharya (2015, 2018) showed that in binary and multinomial

choice models, the distribution of compensating and equivalent variation under a range of economic

changes can be expressed as closed-form functionals of choice probabilities.
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Remark 1. The counterfactual evaluation point x can depend on Xi. For example, x can be the

time average of Xi shifted by a small amount. This allows for counterfactuals that fix the value of

certain components of Xit while leaving others at their realized values. However, I will omit this

dependence for notational simplicity.

Remark 2. It may be interesting to consider counterfactuals that allow for endogenous responses

to Xit, such as the imposition of a sales tax in supply-demand analysis. However, this requires a

full structural model for the joint behavior of Xit and Uit and is beyond the scope of this paper.

3 Identification

Notation For a generic random vector W , let FW |X = {FW |X=x : x ∈ Supp(X)} denote the

collection of conditional distributions of W given X, where for all S ⊆ Supp(W |X = x), FW |X=x =

Pr(W ∈ S|X = x).

Define the U -level set as

U(yt, xt; θ) = {ut : yt = g(xt, ut; θ)},

so that

ut ∈ U(yt, xt; θ) ⇐⇒ yt = g(xt, ut; θ).

In words, U(yt, xt; θ) denotes the set of values of Ut that solves Yt = g(Xt, Ut; θ) with structural

function g(·; θ) when Yt = yt and Xt = xt.
1 Figure 1 contains stylized depictions of U -level sets in

Examples 1, 2, and 4 with J = 2. For any closed subset T of Y, let U(T , xt; θ) =
⋃

yt∈T U(yt, xt; θ)

so that ut ∈ U(T , xt; θ) ⇐⇒ g(xt, ut; θ) ∈ T .

Using U -level sets, the distribution of the counterfactual outcome Yt(x) can be characterized as

FYt(x)|X=x(T ) = FUt|X=x(U(T , x; θ0)) a.e. x ∈ Supp(X), ∀T ∈ F(Y),

where F(Y) denotes the collection of all closed subsets of Y. Therefore, to identify the distribution

of Yt(x), it is necessary to identify θ0 and the distribution of Ut|X = x over U(T , x; θ0) for each

T ∈ F(Y). The former, as discussed in Section 2, has been studied in the literature for a broad

1To be clear, U(yt, xt; θ) is merely the pre-image of g(xt, ·; θ). I refer to it as the U -level set for simplicity, though
it may be called by different names in other papers, such as the “disturbance region” in Pakes and Porter (2024).
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(a) Binary Choice Model (b) Ordered Choice Model (c) Multinomial Choice Model

Figure 1: Stylized Depictions of U -Level Sets

class of nonlinear panel data models. The latter is a new element that emerges in the analysis of

counterfactuals. When the outcome distribution exhibits mass points, such as in discrete or mixed

distributions, point identification of both elements is impossible. I give a heuristic explanation for

Example 1 using Figure 2.

(a) U -Level Sets under the Counterfactual (b) U -Level Sets for the Observed Data

Figure 2: Discrepancy of U -Level Sets: Binary Choice Model

As shown in Figure 2, for each x ∈ Supp(X), the goal is to learn how FUt|X=x allocates

probability across U(1, x; θ0) and U(0, x; θ0). However, what is observed, Pr(Yt = 1|X = x) =

FUt|X=x(U(1, xt; θ0)), only contains information about how probability is allocated across U(1, xt; θ0)

and U(0, xt; θ0), which differ from U(1, x; θ0) and U(0, x; θ0) unless x = xt. Assumption 1 enables

learning from Pr(Yt′ = 1|X = x) for t′ ̸= t as well, but they may still lead to different U -level sets

than desired. This discrepancy occurs for almost every x ∈ Supp(X) if Xt contains at least one
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continuous component, which is typically required for the point identification of θ0. As a result, the

distribution of Ut across U(1, x; θ0) and U(0, x; θ0) cannot be uniquely determined.

Given the impossibility of point identification, I provide the sharp identified set of the distri-

bution of Yt(x) in Theorem 1. The proof is in Appendix A. The sharp identified set relies on the

standard definition of observational equivalence, that is, it collects all the distributions of Yt(x) that

can be reproduced by a distribution of Ut consistent with the observed data. A key simplification

afforded by Assumption 1 is that, although one observes joint distributions FY |X , the distribution

of Ut is only required to match the marginals {FYt′ |X}Tt′=1, and one can combine these restrictions

by taking intersection across t′. In this sense, a long panel plays an analogous role to that of an

instrument with rich variation.

Theorem 1. Suppose that Assumptions 1 and 2 hold. Then, the sharp identified set for FYt(x)|X ,

denoted by F∗Yt(x)|X , is given by

F∗Yt(x)|X = {FYt(x)|X : ∃FUt|X ∈ F∗Ut|X

s.t. ∀T ∈ F(Y), FYt(x)|X=x(T ) = FUt|X=x(U(T , x; θ0)) a.e. x ∈ Supp(X)}, (1)

where F∗Ut|X collects the distributions of Ut consistent with the observed data in the sense that

F∗Ut|X =

T⋂
t′=1

{FUt|X : ∀T ∈ F(Y), FYt′ |X=x(T ) = FUt|X=x(U(T , xt′ ; θ0)) a.e. x ∈ Supp(X)}.

Remark 3. Point identification of θ0 (Assumption 2) is imposed to fix ideas and is stronger than

necessary. The identified set defined in (1) is sharp for a given value of θ0. When point identification

of θ0 fails, one can still take the union of (1) over the sharp identified set for θ0 to obtain the sharp

identified set for FYt(x)|X .

4 Implementation

By Theorem 1, the most straightforward way to implement F∗Yt(x)|X is to search over the space of

distributions supported on

U(x) =
{
U(y, x; θ0) ∩

( T⋂
t′=1

U(yt′ , xt′ ; θ0)
)
: (y, y1, . . . , yT ) ∈ YT+1

}
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for each x ∈ Supp(X). With discrete outcomes, U(x) is a finite partition of the space of Ut, and

any point within each set in U(x) produces the same outcome under x, x1, . . . , xT . This extends

the concept of the minimal relevant partition of Tebaldi et al. (2023) to general discrete choice

models.2 Nonetheless, depending on T , the cardinality of Y, and the structural function g, the

cardinality of U(x) can be large, making the search computationally demanding. In this section, I

provide tractable characterizations of F∗Yt(x)|X that avoid directly searching over the distributions

of Ut by exploiting the separable index restriction on g, with a focus on Examples 1-4. I start with

a heuristic illustration in Example 1.

As shown in Figure 2, U -level sets are half intervals: U(1, xt; θ0) = [−x⊤t β0,∞). Hence, when

the value of explanatory variables is changed from observed to counterfactual ones, there is a

set inclusion relationship between the corresponding U -level sets, which can be translated into a

comparison between the distributions of observed and counterfactual outcomes:

x⊤β0 ≤ x⊤t β0 ⇐⇒ U(1, x; θ0) ⊆ U(1, xt; θ0) ⇐⇒ FYt(x)|X=x({1}) ≤ FYt|X=x({1}),

x⊤β0 ≥ x⊤t β0 ⇐⇒ U(1, x; θ0) ⊇ U(1, xt; θ0) ⇐⇒ FYt(x)|X=x({1}) ≥ FYt|X=x({1}).

In this way, I generate identifying restrictions on FYt(x)|X directly from FYt|X . Under Assumption

1, I can repeat this procedure using observed data from any period. The resulting identifying

restrictions turn out to be sharp.

Beyond binary choice models, set inclusion relationships of U -level sets generally take the form

U(T , x; θ0) ⊆ U(T ′, xt; θ0)

for some T , T ′ ∈ F(Y), implying that

FYt(x)|X=x(T ) ≤ FYt|X=x(T ′).

As previewed at the end of Section 2, a common structure in Examples 1-4 makes it easier to

2I present the formal definition of the minimal relevant partition here for completeness. Let Xr denote a finite set
of relevant values of explanatory variables, which can contain both observed and counterfactual values. The minimal
relevant partition is a collection U of sets U ∈ Rdu for which the following property holds for almost every u, u′ ∈ Rdu

(with respect to Lebesgue measure):

u, u′ ∈ U for some U ∈ U ⇐⇒ g(x̃, u; θ0) = g(x̃, u′; θ0) for all x̃ ∈ Xr.

Then, U(x) is a minimal relevant partition by letting Xr = {x, x1, . . . , xT }.
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determine these set inclusion relationships. More formally, Examples 1-4 satisfy an index separability

condition in the sense that by partitioning θ = (β, γ),

(T , T ′) ∈ Y(x⊤β, x⊤t β; γ) ⇒ U(T , x; θ) ⊆ U(T ′, xt; θ) (2)

for some collection Y(x⊤β, x⊤t β; γ) of pairs of subsets of Y.3 In words, (2) means that the set

inclusion relationship between U(T , x; θ) and U(T ′, xt; θ) can be determined by examining the pair

of indices (x⊤β, x⊤t β). By carefully selecting Y(x⊤β, x⊤t β; γ), the implied set inclusion relationships

of U -level sets can be shown to exhaust all the information on the distribution of Yt(x).

Examples 1-3 are encompassed by the following monotone transformation model.

Example 5 (Monotone Transformation Model). Consider the model

Yt = h(X⊤
t β0 + Ut; γ0),

where β0 ∈ Rdx is a vector of unknown coefficients, and h is a transformation function that is weakly

increasing, right-continuous, and known up to a finite-dimensional parameter γ0. For Example 1,

h(v; γ) = 1{v ≥ 0}. For Example 2, h(v; γ) =
∑J

j=0 1{v ≥ γj}. For Example 3, h(v; γ) = max{0, v}.

Define the generalized inverse of h as

h−(y; γ) = inf{y∗ ∈ Y : h(y∗; γ) ≥ y}, y ∈ Y.

Then, U -level sets satisfy

U([y,∞), xt; θ) = [−x⊤t β + h−(y; γ),∞). (3)

Also define

Yu(x
⊤β, x⊤t β; γ) = {([y,∞), [y′,∞)) ∩ Y2 : (y, y′) ∈ Y,−x⊤β + h−(y; γ) ≥ −x⊤t β + h−(y′; γ)},

Yl(x
⊤β, x⊤t β; γ) = {([y,∞), [y′,∞)) ∩ Y2 : (y, y′) ∈ Y,−x⊤β + h−(y; γ) ≤ −x⊤t β + h−(y′; γ)}.

3A more general form allowing for nonlinear indices replaces Y(x⊤β, x⊤
t β; γ) with Y(s(x, θ), s(xt, θ); θ), where

s(·; θ) is a potentially vector-valued function known up to θ. However, in this paper, I focus on linear indices that are
the most commonly used in practice.
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One can predict the following set inclusion relationships:

(T , T ′) ∈ Yu(x
⊤β, x⊤t β; γ) ⇐⇒ U(T , x; θ) ⊆ U(T ′, xt; θ),

(T , T ′) ∈ Yl(x
⊤β, x⊤t β; γ) ⇐⇒ U(T , x; θ) ⊇ U(T ′, xt; θ).

Example 4 (continued). Note that for any T ⊊ {0, 1, . . . , J} such that T ≠ ∅,

U(T , xt; θ) =
{
Ut : max

j∈T
x⊤jtβ + Ujt ≥ max

k/∈T
x⊤ktβ + Ukt

}
.

Since γ is not present in this example, I omit it and define

Y(x⊤β, x⊤t β) =
{
(T , T ) : T ⊊ {0, 1, . . . , J}, T ≠ ∅,min

j∈T
(xjt − xj)

⊤β ≥ max
k/∈T

(xkt − xk)
⊤β

}
. (4)

Intuitively, for any T satisfying the restrictions in (4), moving from x to xt makes alternatives in T

more likely to be chosen, regardless of the distribution of Ut. Hence, one can predict the following

set inclusion relationships:

(T , T ′) ∈ Y(x⊤β, x⊤t β) ⇒ U(T , x; θ) ⊆ U(T ′, xt; θ). (5)

A proof of relation (5) is given in Appendix A. It is helpful to understand (5) graphically. Consider

the case of J = 2 and suppose that (x2t − x2)
⊤β > (x1t − x1)

⊤β > 0. Then, Y(x⊤β, x⊤t β) =

{({2}, {2}), ({2, 1}, {2, 1})}. As shown in Figure 3, there are two set inclusion relationships:

U(2, x; θ) ⊆ U(2, xt; θ),

U(2, x; θ) ∪ U(1, x; θ) ⊆ U(2, xt; θ) ∪ U(1, xt; θ).

In general, to construct Y(x⊤β, x⊤t β), one can simply rank the J + 1 index function differences

{(xjt − xj)
⊤β}Jj=0 and collect the T ’s that contain the top j alternatives for j = 1, . . . J .

With the set inclusion relationships of U -level sets discussed above, I am ready to present

tractable characterizations of F∗Yt(x)|X for Examples 5 and 4 in Theorems 2 and 3, respectively. The

proofs are in Appendix A.
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(a) U -Level Sets under the Counterfactual (b) U -Level Sets for the Observed Data

Figure 3: Set Inclusion Relationships of U -Level Sets: Multinomial Choice Model

Theorem 2. Suppose that Assumptions 1 and 2 hold. Let g be specified as in Example 5. Then,

F∗Yt(x)|X =
T⋂

t′=1

{
FYt(x)|X : ∀(T , T ′) ∈ Yu(x

⊤β0, x
⊤
t′β0; γ0), FYt(x)|X=x(T ) ≤ FYt′ |X=x(T ′),

∀(T , T ′) ∈ Yl(x
⊤β0, x

⊤
t′β0; γ0), FYt(x)|X=x(T ) ≥ FYt′X=x(T ′) a.e. x ∈ Supp(X)

}
. (6)

By Theorem 2, the sharp bounds on the counterfactual survival probability FYt(x)|X=x([y,∞))

are given by

T⋂
t′=1

[
sup

y′:−x⊤β0+h−(y;γ0)

≥−x⊤
t′β0+h−(y′;γ0)

FYt′ |X=x([y
′,∞)), inf

y′:−x⊤β0+h−(y;γ0)

≤−x⊤
t′β0+h−(y′;γ0)

FYt′ |X=x([y
′,∞))

]

with the convention that sup ∅ = 0 and inf ∅ = 1. This result is similar to Theorem 2 of Botosaru

and Muris (2024), where they allow the transformation function h to vary over time. My framework

can also accommodate time-varying h as long as it is point-identified. The key difference is that I

establish the sharpness of their bounds.

Theorem 3. Suppose that Assumptions 1 and 2 hold. Let g be specified as in Example 4. Then,

F∗Yt(x)|X =

T⋂
t′=1

{FYt(x)|X : ∀(T , T ′) ∈ Y(x⊤β0, x⊤t′β0), FYt(x)|X=x(T ) ≤ FYt′ |X=x(T ′) a.e. x ∈ Supp(X)}.

(7)
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A collection of choice sets similar to (4) appears in Pakes and Porter (2024). They used the

set inclusion relationship of U -level sets for the observed data between two time periods to derive

identifying restrictions on the structural parameter θ0. They also showed that when T = 2, these

identifying restrictions are sharp and yield point identification under the additional conditions given

in Shi et al. (2018). My results further open up the possibility of counterfactual analysis built upon

the knowledge of θ0.

5 Estimation and Inference

In this section, I focus on discrete outcomes. Let

τ0(x) = {FYt|X=x({y}) : y ∈ Y, t ∈ {1, . . . , T}}

denote the vector of observed conditional choice probabilities. I consider estimation and inference

of aggregated intersection bounds that can be written as

[Ψl(θ0),Ψu(θ0)] =
[
E
[

max
λ∈Λl(X;θ0)

λ⊤τ0(X)
]
, E

[
min

λ∈Λu(X;θ0)
λ⊤τ0(X)

]]
, (8)

where Λl(x; θ) and Λu(x; θ) are known finite sets, and expectations are taken over X. The reason is

that the bounds on summary measures of the counterfactual outcome distribution can be expressed

as in (8). I demonstrate this point with examples. For T ⊆ Y, let eT ∈ {0, 1}|Y| be a vector whose

yth component is 1 if y ∈ T . For t ∈ {1, . . . , T}, let et be a unit vector with 1 in its tth place.

Example 2 (continued). Fixing a counterfactual value x forXt, the sharp bounds on counterfactual

survival probabilities Pr(Yt(x) ≥ j) take the form of (8). To see this, note that by Theorem 2, the

bounds are given by [E[maxt ψ
l
t(X; θ0)], E[mint ψ

u
t (X; θ0)]], where

ψl
t(x; θ) = FYt|X=x({k : k ≥ min{y ∈ Y : −x⊤β + h−(j; γ) ≤ −x⊤t β + h−(y; γ)}}),

ψu
t (x; θ) = FYt|X=x({k : k ≥ max{y ∈ Y : −x⊤β + h−(j; γ) ≥ −x⊤t β + h−(y; γ)}}),

with the convention that min ∅ = ∞. Define

T l
t (x; θ) = {k : k ≥ min{y ∈ Y : −x⊤β + h−(j; γ) ≤ −x⊤t β + h−(y; γ)}},

T u
t (x; θ) = {k : k ≥ max{y ∈ Y : −x⊤β + h−(j; γ) ≥ −x⊤t β + h−(y; γ)}}.
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Then, ψl
t(x; θ) and ψ

u
t (x; θ) can be written as linear functions of τ0(x):

ψl
t(x; θ) = (et ⊗ eT l

t (x;θ)
)⊤τ0(x), ψu

t (x; θ) = (et ⊗ eT u
t (x;θ))

⊤τ0(x).

Now define

Λl(x; θ) = {et ⊗ eT l
t (x;θ)

: t ∈ {1, . . . , T}}, Λu(x; θ) = {et ⊗ eT u
t (x;θ) : t ∈ {1, . . . , T}}.

Then,

E[max
t
ψl
t(X; θ0)] = E

[
max

λ∈Λl(x;θ0)
−λ⊤τ0(X)

]
, E[min

t
ψu
t (X; θ0)]] = E

[
min

λ∈Λu(x;θ0)
λ⊤τ0(X)

]
.

Example 4 (continued). Fixing a counterfactual value x forXt, the sharp bounds on counterfactual

choice probabilities Pr(Yt(x) = j) take the form of (8). To see this, note that by Theorem 3, the

bounds are given by [E[maxt ψ
l
t(X; θ0)], E[mint ψ

u
t (X; θ0)]], where ψ

l
t(x; θ)/ψ

u
t (x; θ) is the solution

to the linear program

max /minq⃗∈∆J+1 qj

s.t.
∑
j∈T

qj ≤ FYt′ |X=x(T ′) ∀(T , T ′) ∈ Y(x⊤β, x⊤t′β), ∀t′ ∈ {1, . . . , T},

where ∆J+1 denotes the probability simplex in RJ+1. Some algebra reveals that ψl
t(x; θ) and ψ

u
t (x; θ)

have closed forms:

ψl
t(x; θ) =

FYt|X=x({j}) if (xjt − xj)
⊤β ≤ (xkt − xk)

⊤β, ∀k

0 otherwise

,

ψu
t (x; θ) =

FYt|X=x({j}) if (xjt − xj)
⊤β ≥ (xkt − xk)

⊤β, ∀k

FYt|X=x({j} ∪ {k : (xkt − xk)
⊤β > (xjt − xj)

⊤β}) otherwise

.

Define

T l
t (x; θ) =

{j} if (xjt − xj)
⊤β ≤ (xkt − xk)

⊤β, ∀k

∅ otherwise

,
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T u
t (x; θ) =

{j} if (xjt − xj)
⊤β ≥ (xkt − xk)

⊤β, ∀k

{j} ∪ {k : (xkt − xk)
⊤β > (xjt − xj)

⊤β} otherwise

.

It is again evident that ψl
t(x; θ) and ψ

u
t (x; θ) are linear functions of τ0(x):

ψl
t(x; θ) = (et ⊗ eT l

t (x;θ)
)⊤τ0(x), ψu

t (x; θ) = (et ⊗ eT u
t (x;θ))

⊤τ0(x).

Then, the argument used in the previous example applies.

To construct estimators of Ψl(θ0) and Ψu(θ0), I use cross-fitting to estimate τ0.

Definition 1 (Cross-fitting). Divide the cross-sectional units into K evenly-sized folds. For each

k = 1, . . . ,K, use the other K − 1 folds to estimate τ0; denote the resulting estimates by τ̂ (−k). For

each i = 1, . . . , N , take τ̂(Xi) = τ̂ (−ki)(Xi), where ki denotes the fold containing the ith observation.

Let ∥ · ∥ denote the Euclidean norm. I impose the following assumptions.

Assumption 3. For all θ, maxλ∈Λl(x;θ)∪Λu(x;θ) ∥λ∥ ≤M for some M > 0 a.e. x ∈ Supp(X).

Assumption 4. For all θ and τ , argmaxλ∈Λl(x;θ)
λ⊤τ(x) and argminλ∈Λu(x;θ) λ

⊤τ(x) are singletons

a.e. x ∈ Supp(X).

Assumption 5. The distribution of τ0(X) is absolutely continuous with density bounded above.

Assumption 6. ∥τ̂ − τ0∥∞ = op(N
−1/4), where ∥τ∥∞ = supx ∥τ(x)∥.

Assumption 3 imposes boundedness on the objective function of the optimization problems and

is satisfied in Examples 2 and 4. Assumption 4 requires the solution of the optimization problems to

be unique. Assumption 5 is a sufficient condition for the margin condition (Lemma 1) that controls

the concentration of the objective function in the neighborhood of the optimum. In other words, it

ensures the optimum is separated from non-optimal values with high probability. The uniqueness

of the optimal solution and the margin condition are also imposed in Semenova (2024) to derive

inference for a general class of aggregated intersection bounds. I retain Assumption 5 because it is

low-level and compatible with the sufficient conditions for Assumption 2. Assumption 6 requires

the estimation error of τ̂ to vanish fast enough. The op(N
−1/4) rate is a classic assumption in the

semiparametric estimation literature. One may use the series logit estimator in Hirano, Imbens,

and Ridder (2003). Let

I(Y ) = {1{Yt = y} : y ∈ Y, t ∈ {1, . . . , T}}
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be a vector of binary indicators that is conformable with τ0(x). Define

λ∗l (x; θ, τ) = argmax
λ∈Λl(x;θ)

λ⊤τ(x), λ∗u(x; θ, τ) = argmin
λ∈Λu(x;θ)

λ⊤τ(x).

Given the first-step cross-fitted estimator τ̂ of τ0, define

Ψ̂l(θ) =
1

N

n∑
i=1

∑
λ∈Λl(Xi;θ)

1{λ∗l (Xi; θ, τ̂) = λ}λ⊤I(Yi),

Ψ̂u(θ) =
1

N

n∑
i=1

∑
λ∈Λu(Xi;θ)

1{λ∗u(Xi; θ, τ̂) = λ}λ⊤I(Yi).

Theorem 4. Suppose that Assumptions 3-6 hold. Then, for a given θ,

√
N(Ψ̂l(θ)−Ψl(θ))

d→ N(0, Vl(θ)),
√
N(Ψ̂u(θ)−Ψu(θ))

d→ N(0, Vu(θ)),

where

Vl(θ) = E
[ ∑
λ∈Λl(X;θ)

1{λ∗l (X; θ, τ0) = λ}(λ⊤I(Y ))2
]
−Ψ2

l (θ),

Vu(θ) = E
[ ∑
λ∈Λu(X;θ)

1{λ∗u(X; θ, τ0) = λ}(λ⊤I(Y ))2
]
−Ψ2

u(θ).

In view of Theorem 4, a natural idea is to plug in a first-step estimate θ̂ of θ0 to obtain the

final estimators Ψ̂l(θ̂) and Ψ̂u(θ̂). However, the asymptotic distribution of such plug-in estimators

is complicated by the estimation error of θ̂. I give a heuristic explanation for Ψ̂l(θ̂) in Example 1.

One can decompose

Ψ̂l(θ̂)−Ψl(θ0) = Ψ̂l(θ̂)−Ψl(θ̂) + Ψl(θ̂)−Ψl(θ0).

By Theorem 4, Ψ̂l(θ̂)−Ψl(θ̂) = O(N−1/2). Note that θ enters Ψl(θ) only through Λl so that

|Ψl(θ̂)−Ψl(θ0)| = O(Pr(Λl(X; θ̂) ̸= Λl(X; θ0))).

For θ ̸= θ0, Λl(x; θ) ̸= Λl(x; θ0) if for some t, sgn((xt−x)⊤β) ̸= sgn((xt−x)⊤β0), which occurs with

probability of order O(∥θ − θ0∥). Therefore, Ψl(θ̂) − Ψl(θ0) becomes dominating in the expansion
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of Ψ̂l(θ̂) if θ̂ converges at a slower rate than N−1/2, as is the case with the maximum estimator

proposed by Manski (1987) and its smoothed version.

To utilize the asymptotic normality result in Theorem 4, I consider Bonferroni-type confidence

intervals. To this end, define

V̂l(θ) =
1

N

N∑
i=1

∑
λ∈Λl(Xi;θ)

1{λ∗l (Xi; θ, τ̂) = λ}(λ⊤I(Yi))2 − Ψ̂2
l (θ),

V̂u(θ) =
1

N

N∑
i=1

∑
λ∈Λu(Xi;θ)

1{λ∗u(Xi; θ, τ̂) = λ}(λ⊤I(Yi))2 − Ψ̂2
u(θ),

which are consistent estimators of Vl(θ) and Vu(θ) for a given θ under Assumption 6. Also, suppose

that one can construct a (1− δ)-confidence region for θ0:

lim
N→∞

Pr(θ0 ∈ CRN (δ)) = 1− δ. (9)

Construction of CRN (α) is possible using existing estimators of θ0. A brief review is provided below.

For 0 ≤ δ < α, the Bonferroni confidence interval for [Ψl(θ0),Ψu(θ0)] is given by

CIN (α, δ) =
[

inf
θ∈CRN (δ)

Ψ̂l(θ)− z1−(α−δ)/2

√
V̂l(θ)/N, sup

θ∈CRN (δ)
Ψ̂u(θ) + z1−(α−δ)/2

√
V̂u(θ)/N

]
.

Proposition 1. Suppose that Assumptions 3-6 and (9) hold. Then, for any 0 ≤ δ < α,

lim
N→∞

Pr([Ψl(θ0),Ψu(θ0)] ⊆ CIN (α, δ)) = 1− α.

In Appendix B, I conduct a Monte Carlo experiment to evaluate the performance of the confi-

dence interval in Proposition 1.

Remark 4. The confidence interval in Proposition 1 is for the sharp identified set [Ψl(θ0),Ψu(θ0)]

of the counterfactual probability, not the counterfactual probability itself. If the latter is of interest,

one may adapt the methods of Imbens and Manski (2004) and Stoye (2009) to construct confidence

intervals that are less conservative yet uniformly valid, but this is beyond the scope of this paper.

Remark 5. The confidence interval in Proposition 1 is two-sided. If one is only interested in the

upper or lower bound on the counterfactual probability, it is straightforward to construct a one-sided

confidence interval by using z1−(α−δ) instead of z1−(α−δ)/2 and setting the other side to −∞ or ∞.

19



The literature on semiparametric inference for θ0 has not yet converged on a single procedure.

For panel data binary choice models, the asymptotic distribution of the maximum score estimator

is that of the maximizer of a Gaussian process, which is hard to use for inference. One solution

is to switch to the smoothed maximum score estimator proposed by Charlier, Melenberg, and

van Soest (1995), but this requires selecting an additional kernel function and tuning parameters.

An alternative is to use bootstrap-based methods. Abrevaya and Huang (2005) have shown that

the classic bootstrap is inconsistent for the maximum score estimators. Valid inference may be

conducted using subsampling (Delgado, Rodŕıguez-Poo, and Wolf, 2001), m-out-of-n bootstrap

(Lee and Pun, 2006), the numerical bootstrap (Hong and Li, 2020), and a model-based bootstrap

procedure that analytically modifies the criterion function (Cattaneo, Jansson, and Nagasawa,

2020). For panel data multinomial choice models, Khan et al. (2021) proposed a localized maximum

score estimator, whose asymptotic distribution is also that of the maximizer of a Gaussian process.

Khan et al. (2021) conjectured that both a smoothed maximum score approach and bootstrap-based

procedures may be used for inference.

6 Numerical Experiments

In this section, I investigate how identifying power varies with the number of time periods and the

cardinality of outcome support through numerical experiments.

For Example 2, I consider the following data generating process:

Yt =

J∑
j=0

1{β(1)0 X
(1)
t + β

(2)
0 X

(2)
t + Ut ≥ γj0}, t = 1, . . . , T,

where X
(1)
t ∼ N(0, 0.5) and Ut = A + Vt with Vt ∼ N(0, 0.5). I define two equally sized latent

populations of cross-sectional units. In the first population, X
(2)
t ∼ Bernoulli(0.5) and A = 1 +

(0.5 + T (X̄(1))2) · Z, while in the second population, X
(2)
t = 0 and A = (0.5 + T (X̄(1))2) · Z,

where X̄(1) = 1
T

∑T
t=1X

(1)
t and Z ∼ N(0, 0.5). In summary, A is heteroskedastic, with its variance

depending onX
(1)
t and mean shifted byX

(2)
t . I set β

(1)
0 = β

(2)
0 = 1. I consider three different numbers

of categories: J ∈ {1, 2, 3}. I set (γ10 , γ20 , γ30) = (0, 1, 2). In the empirical context of female labor force

participation, Yt may represent different levels of labor force participation, such as not working,

working part-time, or working full-time,X
(1)
t andX

(2)
t may represent husband’s income and fertility,
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respectively, and A may capture latent household productivity or access to job networks.

Fixing a counterfactual value x = (−0.5, 1) for Xt, the object of interest is the counterfactual

survival probability Pr(Yt(x) ≥ 1). I compute the sharp bounds on Pr(Yt(x) ≥ 1) using Theorem 2

and noting that

Pr(Yt(x) ≥ 1) =

∫
FYt(x)|X=x([1,∞))dFX(x),

where the integral is approximated by 5,000 random draws. Figure 4 shows the sharp bounds on

Pr(Yt(x) = 1) re-centered by the true value for J ∈ {1, 2, 3} and T ∈ {1, 2, . . . , 20}. One can see

that the bounds tighten as T increases. There are substantial gains in identifying power when T

increases from 1 to 10, but the incremental gains are less pronounced when T further increases

from 10 to 20. The bound widths do not differ much across J , especially when T is relatively large.

Figure 4: Re-centered Sharp Bounds on Pr(Yt(x) ≥ 1) in Ordered Choice Models

For Example 4, I consider the following data generating process:

Yt = argmax
j

Y ∗
jt, t = 1, . . . , T,

where the indirect utilities are given by

Y ∗
0t = 0,

Y ∗
jt = β

(1)
0 X

(1)
jt + β

(2)
0 X

(2)
jt + Ujt, j = 1, . . . , J.

Similar to Example 2, X
(1)
jt ∼ N(0, 0.5) ∀j and Ujt = Aj+Vjt ∀j, where (V1t, . . . , VJt) follows a zero
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mean multivariate normal distribution with a variance matrix that has 0.5 on the diagonal and 0.25

in all off-diagonal elements. I define two equally sized latent populations of cross-sectional units. In

the first population, X
(2)
jt ∼ Bernoulli(0.5) ∀j and Aj = 1 + (0.5 + T (X̄

(1)
j )2) · Zj ∀j, while in the

second population, X
(2)
jt = 0 ∀j and Aj = (0.5 + T (X̄

(1)
j )2) · Zj ∀j, where X̄(1)

j = 1
T

∑T
t=1X

(1)
jt and

Z1, . . . , ZJ are independent N(0, 0.5) random variables. Here again, Aj exhibits heteroskedasticity

driven by X
(1)
jt and a shift in mean based on X

(2)
jt . I set β

(1)
0 = β

(2)
0 = 1. I consider three different

numbers of alternatives: J ∈ {1, 2, 3}. In the empirical context of consumers choosing among

different brands, X
(1)
jt may represent prices, X

(2)
jt may represent promotion status, and Aj may

capture quality and intrinsic brand preference.

Fixing counterfactual values x1 = (−0.5, 1) for X1t and xj = (0, 0) for Xjt ∀j > 1, the object of

interest is the probability of alternative 1 being chosen: Pr(Yt(x) = 1). I compute the sharp bounds

on Pr(Yt(x) = 1) using Theorem 3 and noting that

Pr(Yt(x) = 1) =

∫
FYt(x)|X=x({1})dFX(x),

where the integral is approximated by 5,000 random draws. Figure 5 shows the sharp bounds on

Pr(Yt(x) = 1) re-centered by the true value for J ∈ {1, 2, 3} and T ∈ {1, 2, . . . , 20}. The trend in

identifying power as T increases aligns with the pattern observed in Figure 4. Unlike in Figure 4,

the bounds become wider when J increases. A plausible explanation is that unlike Example 2, here

a larger J leads to higher-dimensional unobserved heterogeneity, whose distribution may require

more data to learn about.

Figure 5: Re-centered Sharp Bounds on Pr(Yt(x) = 1) in Multinomial Choice Models
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7 Empirical Applications

7.1 Binary Choice Model: Female Labor Force Participation

In the first empirical illustration, I study women’s labor force participation using data from the

US Panel Study of Income Dynamics (PSID) and the British Household Panel Survey (BHPS).

For the PSID, I use a sample from Fernández-Val (2009), which consists of N = 1461 women over

T = 9 years between 1980-1988. Only married women aged 18-64 with husbands in the labor force

in each sample period are included. For the BHPS, I construct a similar sample from all 1991-2008

waves, which consists of N = 4602 women. The sample is an unbalanced panel, in which any woman

observed in at least two waves is included.

For illustrative purposes, I focus on the static binary choice model:

Yit = 1{X⊤
it β0 + Uit ≥ 0},

where Yt is the labor force participation indicator, and Xt includes the natural logarithm of the

husband’s income, the number of children in three age categories, and a quadratic function of age.

Note that some unobserved factors, such as household productivity and access to job networks, may

simultaneously affect both fertility and a husband’s income, as well as labor force participation.

I assume that these factors are invariant over time so that Assumption 1 holds. I interpret the

age categories in the two samples as follows: the PSID divides children into infants (0-2 years),

preschoolers (3-5 years), and school-age children (6-17 years), while the BHPS divides children

into infants (0-2 years), preschoolers (3-4 years), and school-age children (5-18 years). Descriptive

statistics for both samples are given in Table 1.

Table 1: Descriptive Statistics

PSID Sample BHPS Sample

Mean Std. Dev. Mean Std. Dev.

Participation 0.72 0.45 0.78 0.41
Age 37.3 9.22 41.9 10.02
Infants 0.23 0.47 0.12 0.34
Preschoolers 0.29 0.51 0.12 0.34
School-Age Children 1.05 1.10 0.74 0.98
Husband’s Income (1995 $1000/£1000) 42.29 40.01 20.02 15.46
No. Observations 13149 35608
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Continuous variation in the husband’s income enables the point identification of β0. I estimate

β0 using the maximum-score-type objective function:

∑
i

∑
t>s

(Yit − Yis) · sgn((Xit −Xis)
⊤β).

Table 2 reports the point estimates of β0. One can see that the coefficients on the number of

children in all three age categories are consistent across samples, exhibiting the same sign and

similar magnitudes. While the coefficients on log husband’s income also have the same sign in both

samples, the magnitude is notably smaller in the BHPS sample. The coefficients on age and age

squared indicate a concave relationship.

Table 2: Estimated β0

PSID Sample BHPS Sample
Max. Score Pooled Logit FE Logit Max. Score Pooled Logit

Infants -1 -1 -1 -1 -1
Preschoolers -0.57 -0.60 -0.58 -0.60 -0.69
School-Age Children -0.01 -0.17 -0.19 -0.01 -0.27
Log Husband’s Income -0.10 -0.38 -0.34 -0.01 -0.06
Age/10 1.14 1.74 3.35 1.02 2.16
(Age/10)2 -0.13 -0.27 -0.42 -0.11 -0.28

Consider the counterfactual scenario where log husband’s income and age are set at their time

averages and the number of children in each age category is increased from 0 to 1. I calculate

the sharp bounds on counterfactual probabilities of labor force participation using the estimator

developed in Section 5 and plot them in Figure 6. To do this, I plug in the maximum-score estimates

of β0 in Table 2 and the estimates of observed conditional choice probabilities, τ0(x), from the

logistic regression of observed choices on Xit and
1
Ti

∑Ti
t=1Xit.

4

In both samples, the bounds predict a decrease in the labor force participation rate when having

one more infant or preschooler, while the effect of having one more school-age child is ambiguous. On

the other hand, the bounds for having one infant or preschooler are wider than those for having one

school-age child. One plausible explanation is that over 91% of the observations in the PSID sample

and over 96% in the BHPS sample have either no infant or no preschooler. These observations tend

to have a higher index compared to the counterfactual, providing an informative upper bound and

4Note that under Assumption 1, each element of τ0(x) can be written as FYt|X=x({y}) = FUt|X=x(U(y, xt; θ0)) =
G(xt, x). Hence, the logistic regression of observed choices on some function of Xit and lower-dimensional statistics
of Xi, such as 1

Ti

∑Ti
t=1 Xit, can be viewed as a series logit approximation to τ0(x).
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Figure 6: Counterfactual Probabilities of Labor Force Participation

a trivial lower bound. Overall, there seems to be a common pattern in how fertility affects female

labor force participation across different countries and non-overlapping time periods.

For comparison, I also consider two parametric specifications. I assume Uit = Ai + Vit, where

Vit ⊥ Xit and Vit is distributed i.i.d. Type 1 extreme value. In the first specification “Pooled Logit”, I

set Ai = A ∀i. This specification imposes exogeneity of Xit and permits a pooled logistic regression.

In the second specification “FE Logit”, I do not restrict Ai. I first estimate β0 using the conditional

maximum likelihood estimator and then calculate the outer bound estimators for counterfactual

probabilities proposed in Pakel and Weidner (2024). This specification is only applied to the PSID

sample, where the panel is balanced. The associated coefficient estimates are reported in Table 2

under the columns “Pooled Logit” and “FE Logit”. I plot predictions of counterfactual labor force

participation rates from these two parametric specifications in Figure 6.5 One can see that some

parametric predictions lie close to the upper bounds, suggesting that they may be overly optimistic.

7.2 Multinomial Choice Model: Saltine Cracker Purchases

In the second empirical illustration, I apply my approach to the optical-scanner panel data set

on purchases of saltine crackers in the Rome, Georgia market, collected by Information Resources

Incorporated. The data set contains information on 3292 purchases of crackers by 136 households

over a period of 2 years. There are three major national brands in the database: Nabisco, Sunshine,

Keebler. Local brands are aggregated under the “Private” label. The data set also includes three

5The bounds based on FE Logit are quite tight, with widths smaller than 10−4, so I only report the midpoints.
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explanatory variables, two of which are binary, and the other one is continuous. The first binary

explanatory variable, “display”, denotes whether or not a brand was on special display at the store

at the time of purchase. The second binary explanatory variable, “feature”, denotes whether or not

a brand was featured in a newspaper advertisement at the time of purchase. The third explanatory

variable is the “price”, which corresponds to the actual price (in dollars) for the brand purchased

and the shelf price for all other brands. Table 3 reports the descriptive statistics for each brand.

Table 3: Data Characteristics of Saltine Crackers

Nabisco Sunshine Keebler Private

Market Share 0.54 0.07 0.07 0.32
Display 0.34 0.13 0.11 0.10
Feature 0.09 0.04 0.04 0.05
Average Price 1.08 0.96 1.13 0.68

The dataset is an unbalanced panel data with the number of purchases varying across households

i (≡ Ti, 14 ≤ Ti ≤ 77). Write J̄ = {1 = Nabisco, 2 = Sunshine, 3 = Keebler, 4 = Private} for the

choice set. For each household i, brand j, and purchase t, I use X
(1)
ijt , X

(2)
ijt , and X

(3)
ijt to denote the

three explanatory variables: the logarithm of “price”, “display”, and “feature”, respectively. There

are unobserved confounders, such as quality and intrinsic brand preferences, which are likely to

remain invariant during the sample period. Hence, Assumption 1 is plausibly valid.

I follow Khan et al. (2021) to model the observed choice as

Yijt = 1{Y ∗
ijt > Y ∗

ikt, ∀k ̸= j},

where the indirect utilities are given by

Y ∗
ijt = −X(1)

ijt + β
(1)
0 X

(2)
ijt + β

(2)
0 X

(3)
ijt + Uijt, j ∈ J̄ , t = 1, . . . , Ti,

where the coefficient on X
(1)
ijt is normalized to be −1. (β

(1)
0 , β

(2)
0 ) is point-identified because of rich

variation in prices and can be estimated by minimizing a localized rank-based objective function

∑
i

∑
t>s

Khn(X
(1)
i(−1)s −X

(1)
i(−1)t)1{X̃i(−1)s = X̃i(−1)t}(Yi1s − Yi1t) · sgn((Xi1s −Xi1t)

⊤β),

where β = (−1, β(1), β(2))⊤, X̃ijt = (X
(2)
ijt , X

(3)
ijt )

′, and X
(1)
i(−1)t (X̃i(−1)t) denotes the vector collecting
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X
(1)
ijt (X̃ijt) for all j ∈ J̄ \ {1}. Following Khan et al. (2021), I choose the Gaussian kernel function

and hn = 3σ̂n−1/6/ 3
√
log n, where σ̂ is the standard deviation of the matching variable.

No other methods in the literature deliver counterfactual predictions for panel multinomial

choice models. For comparison, I consider two parametric models, pooled multinomial logit and

pooled multinomial probit, based on the indirect utility specification

Y ∗
ijt = −β(0)0 X

(1)
ijt + β

(1)
0 X

(2)
ijt + β

(2)
0 X

(3)
ijt + αj + Vijt, j ∈ J̄ , t = 1, . . . , Ti,

where Vijt is independent of Xijt, and (β
(0)
0 , β

(1)
0 , β

(2)
0 ) and alternative-specific intercepts αj are

parameters to be estimated.6 Table 4 reports the point estimates of coefficients.7

Table 4: Parametric and Semiparametric Estimations of Coefficients

β̂(1) β̂(2)

Semiparametric panel 0.08 0.09
Pooled multinomial logit 0.03 0.16
Pooled multinomial probit 0.02 0.11

I consider the counterfactual choice probabilities under two counterfactual values x and x for

explanatory variables. The price vector for x is p = (1.09, 1.05, 1.05, 0.78) and the price vector for

x is p = (1.09, 0.89, 1.21, 0.59). The display and feature statuses are fixed at zero for all brands for

both x and x. Moving from x to x corresponds to a simultaneous price change of multiple brands,

which consists of a rise from the 25th percentile to the 75th percentile of the price for brand 3

(Keebler), and a fall from the 75th percentile to the 25th percentile of the price for brands 2 and

4 (Sunshine and Private), with the price of brand 1 (Nabisco) fixed at the median.

I calculate the sharp bounds on counterfactual choice probabilities using the estimator developed

in Section 5. To do this, I plug in the semiparametric estimates of (β
(1)
0 , β

(2)
0 ) in Table 4 and the

estimates of observed conditional choice probabilities, τ0(x), from multinomial logistic regression

of observed choices on {(Xijt, (X
(1)
ijt )

2), 1
Ti

∑Ti
t=1Xijt,

1
Ti

∑Ti
t=1(X

(1)
ijt )

2)}j∈J̄ . Panels (a) and (b) of

Figure 7 display the bounds under x and x, respectively.

The bounds predict a market share decrease for brands 1 and 3 (Nabisco and Keebler) and a

market share increase for brand 4 (Private), while the direction of the market share change for brand

6The parameter estimation of these models is conducted using Stata packages “cmclogit” and “cmcmmprobit”.
7For the pooled multinomial logit and probit models, I report the ratios of the coefficients on X

(2)
ijt and X

(3)
ijt to

the absolute value of the coefficient on X
(1)
ijt .
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(a) Under Price Vector p = (1.09, 1.05, 1.05, 0.78) (b) Under Price Vector p = (1.09, 0.89, 1.21, 0.59)

Figure 7: Counterfactual Choice Probabilities

2 (Sunshine) is ambiguous. For comparison, I also plot the predictions from pooled multinomial

logit and probit models in Figure 7. Parametric predictions lie within semiparametric bounds, with

some close to upper or lower limits. Consequently, parametric models might underestimate the

market share change of brand 3 (Keebler).

8 Extension: Dynamic Binary Choice Models

Although the main framework of this paper focuses on static models, the identification strategy

based on the set inclusion relationship of U -level sets can be applied to dynamic models to derive

(non-sharp) identifying restrictions on counterfactual distributions. To demonstrate this, I consider

the dynamic panel data binary choice model:

Yt = 1{ρ0Yt−1 +X⊤
t β0 + Ut ≥ 0}.

Let θ0 = (ρ0, β0). I maintain Assumption 1, which is termed partial stationarity in Gao and Wang

(2024) because the conditioning set only contains part of the explanatory variables. Identification

of θ0 under Assumption 1 is discussed in Khan et al. (2023) and Gao and Wang (2024). Fixing a

counterfactual value (y, x) for (Yt−1, Xt), the interest is in the distribution of the counterfactual

outcome Yt(y, x) = 1{ρ0y + x⊤β0 + Ut ≥ 0}. This is in line with the dynamic potential outcome

model of Torgovitsky (2019).
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I slightly modify the definition of U -level sets as

U(yt, yt−1, xt; θ) = {ut : yt = 1{ρyt−1 + x⊤t β + ut ≥ 0}}.

The key observation is that for y ∈ {0, 1},

Ut ∈ U(y, Yt−1, Xt; θ0) and U(y, Yt−1, Xt; θ0) ⊆ U(y, y, x; θ0) ⇒ Ut ∈ U(y, y, x; θ0). (10)

Note that

U(1, Yt−1, Xt; θ0) ⊆ U(1, y, x; θ0)

⇐⇒ U(0, Yt−1, Xt; θ0) ⊇ U(0, y, x; θ0)

⇐⇒ (Yt−1 = 1 and ρ0y + x⊤β0 ≥ ρ0 +X⊤
t β0) or (Yt−1 = 0 and ρ0y + x⊤β0 ≥ X⊤

t β0).

Taking the conditional expectation of (10) given X = x yields

Bl
t(x; θ0) ≤ Pr(Yt(y, x) = 1|X = x) ≤ Bu

t (x; θ0),

where

Bl
t(x; θ) =



Pr(Yt = 1|X = x) if ρy + x⊤β ≥ max{ρ+ x⊤t β, x
⊤
t β}

Pr(Yt = 1, Yt−1 = 0|X = x) if x⊤t β ≤ ρy + x⊤β < ρ+ x⊤t β

Pr(Yt = 1, Yt−1 = 1|X = x) if ρ+ x⊤t β ≤ ρy + x⊤β < x⊤t β

0 otherwise

,

Bu
t (x; θ) =



1 if ρy + x⊤β ≥ max{ρ+ x⊤t β, x
⊤
t β}

1− Pr(Yt = 0, Yt−1 = 1|X = x) if x⊤t β ≤ ρy + x⊤β < ρ+ x⊤t β

1− Pr(Yt = 0, Yt−1 = 0|X = x) if ρ+ x⊤t β ≤ ρy + x⊤β < x⊤t β

Pr(Yt = 1|X = x) otherwise

.

The intuition is that when the counterfactual index is large or small enough to eliminate uncertainty

in the set inclusion relationship of U -level sets, the bounds align with those in the static case.

Otherwise, the bounds will depend on the distribution of the lagged outcome.
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Assumption 1 allows me to use information across all time periods to obtain tighter bounds.

Eventually, the counterfactual probability Pr(Yt(y, x) = 1) can be bounded as

E
[
max

t
Bl

t(X; θ0)
]
≤ Pr(Yt(y, x) = 1) ≤ E

[
min
t
Bu

t (X; θ0)
]
.

Further analysis for nonlinear dynamic panel data models is left to future research.

9 Conclusion

This paper establishes the sharp identified set of the distribution of the counterfactual outcome

in semiparametric nonlinear panel data models in cases where structural parameters are point-

identified. I rely on time homogeneity of the distribution of unobserved heterogeneity while allowing

for flexible dependence between unobserved heterogeneity and explanatory variables. I provide

tractable implementation procedures for monotone transformation models and multinomial choice

models, by exploiting an index separability condition. I examine factors affecting the informativeness

of the identified set through numerical experiments. I also derive theoretical results for estimation

and inference. My approach is applied to empirical data on female labor force participation and

purchases of saltine crackers. Finally, I discuss the potential extension of my identification strategy

to dynamic settings.
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Appendix A Proofs

Proof of Theorem 1. Following Chesher and Rosen (2017), I adopt the notion of structures. In my

case, a structure is a pair m = (θ,FU |X). Each structure m delivers a conditional distribution

PY |X(·|x;m) for each x ∈ Supp(X). Let PY |X(m) = {PY |X(·|x;m) : x ∈ Supp(X)}. Let M be the

set of structures that satisfy Assumption 1. Let I(M,FY |X) denote the set of structures identified

by M and FY |X , that is, m ∈ M if m is admitted by M and FY |X and PY |X(m) agree. Then, the

sharp identified set for FYt(x)|X is defined as

F∗Yt(x)|X = {FYt(x)|X : ∃(θ,FU |X) ∈ I(M,FY |X)

s.t. ∀T ∈ F(Y), FYt(x)|X=x(T ) = FUt|X=x(U(T , x; θ)) a.e. x ∈ Supp(X)}.

Note that F∗Yt(x)|X depends on I(M,FY |X) only through (θ, {FUt|X}Tt=1). Let I∗(M,FY |X) denote

the projection of I(M,FY |X) onto (θ, {FUt|X}Tt=1). Then,

F∗Yt(x)|X = {FYt(x)|X : ∃(θ, {FUt|X}Tt=1) ∈ I∗(M,FY |X)

s.t. ∀T ∈ F(Y), FYt(x)|X=x(T ) = FUt|X=x(U(T , x; θ)) a.e. x ∈ Supp(X)}. (11)

In static models, (θ, {FUt|X}Tt=1) only deliver the marginals of PY |X(·|x;m). By Sklar’s theorem,

there exists a collection of T -variate copula CX = {CX(·|x) : x ∈ Supp(X)} such that CX(·|x)

reproduces the dependence structure of PY |X(·|x;m). In this sense, (θ, {FUt|X}Tt=1, CX) is observa-

tional equivalent to m. Since Assumption 1 only restricts {FUt|X}Tt=1, one can set CX to be the

collection of copulas associated with FY |X and require (θ, {FUt|X}Tt=1) to satisfy Assumption 1 and

be consistent with the marginals of FY |X . Hence,

I∗(M,FY |X) = {(θ, {FUt|X}Tt=1) : Assumption 1 holds and ∀t ∈ {1, . . . , T}, ∀T ∈ F(Y),

FYt|X=x(T ) = FUt|X=x(U(T , xt; θ)) a.e. x ∈ Supp(X)}.

Finally, by Assumption 2, one can further write

I∗(M,FY |X) = {θ0} × {{FUt|X}Tt=1 : Assumption 1 holds and ∀t ∈ {1, . . . , T},∀T ∈ F(Y),

FYt|X=x(T ) = FUt|X=x(U(T , xt; θ0)) a.e. x ∈ Supp(X)}
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= {θ0} ×
T⋂

t′=1

{FUt|X : ∀T ∈ F(Y),

FYt′ |X=x(T ) = FUt|X=x(U(T , xt′ ; θ0)) a.e. x ∈ Supp(X)}. (12)

The result follows by plugging (12) into (11).

Proof of (5). Fix (T , T ′) ∈ Y(x⊤β, x⊤t β). By definition, T ′ = T . For any j ∈ T and k /∈ T ,

(xjt−xj)
⊤β ≥ (xkt−xk)

⊤β. Re-arranging, (xjt−xkt)
⊤β ≥ (xj −xk)

⊤β. Take any Ut ∈ U(T , x; θ).

Then, there exists j ∈ T such that for any k /∈ T ,

Ukt − Ujt ≤ (xj − xk)
⊤β ≤ (xjt − xkt)

⊤β.

Hence, Ut ∈ U(T , xt; θ).

Proof of Theorem 2. By definition, FUt|X ∈ F∗Ut|X if and only if ∀y′ ∈ Y, ∀t′ ∈ {1, . . . , T},

FYt′ |X=x([y
′,∞)) = FUt|X=x(U([y′,∞), xt′ ; θ0)) a.e. x ∈ Supp(X).

It follows that

F∗Yt(x)|X = {FYt(x)|X : ∃FUt|X s.t. ∀y ∈ Y,∀t′ ∈ {1, . . . , T},

FYt(x)|X=x([y,∞)) = FUt|X=x(U([y,∞), x; θ0)),

FYt′ |X=x([y,∞)) = FUt|X=x(U([y,∞), xt′ ; θ0)) a.e. x ∈ Supp(X)}

= {FYt(x)|X : ∃FUt|X s.t. ∀y ∈ Y,∀t′ ∈ {1, . . . , T},

FYt(x)|X=x([y,∞)) = FUt|X=x([−x⊤β0 + h−(y, γ0),∞)),

FYt′ |X=x([y,∞)) = FUt|X=x([−x⊤t′β0 + h−(y, γ0),∞)) a.e. x ∈ Supp(X)},

where the second equality follows from (3). Taking FYt(x)|X from the right-hand side of (6), I want to

show that FYt(x)|X ∈ F∗Yt(x)|X , which amounts to for all x ∈ Supp(X) exhibiting FUt|X=x satisfying

∀y ∈ Y,

FYt(x)|X=x([y,∞)) = FUt|X=x([−x⊤β0 + h−(y, γ0),∞)),

FYt′ |X=x([y,∞)) = FUt|X=x([−x⊤t′β0 + h−(y, γ0),∞)), t′ = 1, . . . , T.
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Fix x ∈ Supp(X). The desired FUt|X=x can be constructed as follows. Define

pt′(y) = FYt′ |X=x([y,∞)), t′ = 1, . . . , T,

pT+1(y) = FYt(x)|X=x([y,∞)),

ut′(y) = −x⊤t′β0 + h−(y, γ0), t
′ = 1, . . . , T,

uT+1(y) = −x⊤β0 + h−(y, γ0).

Then, (6) ensures that for any t′ ∈ {1, . . . , T} and y, y′ ∈ Y,

uT+1(y) ≥ ut′(y
′) ⇐⇒ pT+1(y) ≤ pt′(y

′),

uT+1(y) ≤ ut′(y
′) ⇐⇒ pT+1(y) ≥ pt′(y

′),

Also, by Lemma 1 of Botosaru et al. (2023), Assumption 2 ensures that for any t′, t′′ ∈ {1, . . . , T}

and y, y′ ∈ Y,

ut′(y) ≤ ut′′(y
′) ⇐⇒ pt′(y) ≥ pt′′(y

′).

Put together, for any t′, t′′ ∈ {1, . . . , T + 1} and y, y′ ∈ Y,

ut′(y) ≤ ut′′(y
′) ⇐⇒ pt′(y) ≥ pt′′(y

′). (13)

For u ∈ R, define

(t∗(u), y∗(u)) = argmax
(t′,y)∈{1,...,T+1}×Y:ut′ (y)≤u

ut′(y).

One can set

FUt|X=x([u,∞)) = pt∗(u)(y
∗(u)), u ∈ R.

I now show that FUt|X=x satisfies the monotonicity requirement of a CDF, i.e.,

FUt|X=x([u,∞)) ≥ FUt|X=x([u
′,∞)), ∀u ≤ u′.

To see this, note that by definition,

ut∗(u)(y
∗(u)) ≤ ut∗(u′)(y

∗(u′)).
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which implies that

FUt|X=x([u,∞)) = pt∗(u)(y
∗(u)) ≥ pt∗(u′)(y

∗(u′)) = FUt|X=x([u
′,∞)),

where the inequality follows from (13).

Proof of Theorem 3. Taking FYt(x)|X from the right-hand side of (7), I want to show that FYt(x)|X ∈

F∗Yt(x)|X , which amounts to for all x ∈ Supp(X) exhibiting FUt|X=x satisfying

FYt(x)|X=x({j}) = FUt|X=x(U(j, x; θ0)),

FYt′ |X=x({j}) = FUt|X=x(U(j, xt′ ; θ0)),

for all j ∈ {0, 1, . . . , J} and t′ ∈ {1, . . . , T}. Fix x ∈ Supp(X). Define Uj1,...,jT ,j′ = U(j1, x1; θ0) ∩

· · · ∩ U(jT , xT ; θ0) ∩ U(j′, x; θ0) and qj1,...,jT ,j′ = FUt|X=x(Uj1,...,jT ,j′). Note that qj1,...,jT ,j′ = 0 if

Uj1,...,jT ,j′ = ∅. The probabilities q = {qj1,...,jT ,j′ : Uj1,...,jT ,j′ ̸= ∅} are the building blocks for

constructing FUt|X=x. The task can be rephrased as exhibiting qj1,...,jT ,j′ ≥ 0 satisfying

∑
(j1,...,jT ,j′): Uj1,...,jT ,j′ ̸=∅, j′=j

qj1,...,jT ,j′ = FYt(x)|X=x({j}), (14)

∑
(j1,...,jT ,j′): Uj1,...,jT ,j′ ̸=∅, jt′=j

qj1,...,jT ,j′ = FYt′ |X=x({j}), (15)

for all j ∈ {0, 1, . . . , J} and t′ ∈ {1, . . . , T}. Let

pct =


FYt(x)|X=x({0})

FYt(x)|X=x({1})
...

FYt(x)|X=x({J})

 and pobt′ =


FYt′ |X=x({0})

FYt′ |X=x({1})
...

FYt′ |X=x({J})

 , t
′ = 1, . . . , T.

Let Qct be the matrix with elements in {0, 1} such that (14) can be restated as Qctq = pct and let

Qob
t′ be the matrix with elements in {0, 1} such that (15) can be restated as Qob

t′ q = pobt′ . The task

can be summarized as showing that ∃q ≥ 0 such that: (A) Qctq = pct and (B) Qob
t′ q = pobt′ , ∀t′. Let

{zt′ = (zt
′
0 , z

t′
1 , . . . , z

t′
J )

T}Tt′=1 and w = (w0, w1, . . . , wJ)
T be (J + 1)-dimensional constant vectors.
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Farkas’s Lemma states that if

wTQct +
T∑

t′=1

(zt
′
)TQob

t′ ≥ 0 implies wTpct +
T∑

t′=1

(zt
′
)Tpobt′ ≥ 0,

then ∃q ≥ 0 satisfying constraints (A) and (B). For each t′ ∈ {1, . . . , T}, there exists a weak ordering

for {(xjt′−xj)⊤β0}Jj=0. LetMt′(j) denote the rank of alternative j in this ordering andM−1
t′ denote

the inverse mapping. Then, ({M−1
t′ (J), . . . ,M−1

t′ (j)}, {M−1
t′ (J), . . . ,M−1

t′ (j)}) ∈ Y(x⊤β0, x⊤t′β0) for

j > 0. For any {at′j }j=0,1,...,J,t′=1,...,T ∈ R,

wTpct +
T∑

t′=1

(zt
′
)Tpobt′

=
J∑

j=0

wjFYt(x)|X=x({j}) +
T∑

t′=1

J∑
j=0

zt
′
j FYt′ |X=x({j})

=
T∑

t′=1

J∑
j=0

at
′

M−1
t′ (j)

(FYt′ |X=x({M−1
t′ (J), . . . ,M−1

t′ (j)})− FYt(x)|X=x({M−1
t′ (J), . . . ,M−1

t′ (j)})︸ ︷︷ ︸
≥0 by (7)

)

+
J∑

j=0

(
wj +

T∑
t′=1

∑
ℓ:Mt′ (ℓ)≤Mt′ (j)

at
′
ℓ

)
FYt(x)|X=x({j}) +

T∑
t′=1

J∑
j=0

(
zt

′
j −

∑
ℓ:Mt′ (ℓ)≤Mt′ (j)

at
′
ℓ

)
FYt′ |X=x({j}).

Therefore, given wTQct+
∑T

t′=1(z
t′)TQob

t′ ≥ 0, wTpct+
∑T

t′=1(z
t′)Tpobt′ ≥ 0 if there exist {at′j }j=0,1,...,J,t′=1,...,T ∈

R satisfying

wj +
T∑

t′=1

∑
ℓ:Mt′ (ℓ)≤Mt′ (j)

at
′
ℓ ≥ 0, ∀j,

zt
′
j −

∑
ℓ:Mt′ (ℓ)≤Mt′ (j)

at
′
ℓ ≥ 0, ∀j, t′,

at
′
j ≥ 0 if Mt′(j) > 0, ∀t′.

From the examination of matrices Qct and Qob
1 , . . . , Q

ob
T , wTQct +

∑T
t′=1(z

t′)TQob
t′ ≥ 0 yields

wj′ +

T∑
t′=1

zt
′
jt′

≥ 0 if Uj1,...,jT ,j′ ̸= ∅.
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For j = 0, 1, . . . , J , let

a1j = min
ℓ: Uℓ,j2,...,jT ,j ̸=∅

z1ℓ ,

at
′
j = min

ℓ: U...,jt′−1,ℓ,jt′+1,...,j
̸=∅
zt

′
ℓ , 1 < t′ < T,

aTj = min
ℓ: Uj1,...,jT−1,ℓ,j

̸=∅
zTℓ .

Then, wj +
∑T

t′=1 a
t′
j ≥ 0, ∀j. Also, since Uj1,...,jT ,j′ ̸= ∅ when j1 = · · · = jT = j′, at

′
j ≤ zt

′
j , ∀j, t′.

Moreover, note that Uj1,...,jT ,j′ ̸= ∅ implies that Mt′(jt′) ≥Mt′(j
′), ∀t′. Hence, at′

M−1
t′ (j)

is increasing

in j. The desired {at′j }j=0,1,...,J,t′=1,...,T can be constructed as follows:

at
′

M−1
t′ (0)

= at
′

M−1
t′ (0)

,

at
′

M−1
t′ (j)

= at
′

M−1
t′ (j)

− at
′

M−1
t′ (j−1)

, j = 1, . . . , J.

It remains to construct FUt|X=x. For each Uj1,...,jT ,j′ ̸= ∅, choose a point rj1,...,jT ,j′ ∈ Uj1,...,jT ,j′ . Then,

define FUt|X=x to be the discrete distribution on support points rj1,...,jT ,j′ with FUt|X=x({rj1,...,jT ,j′}) =

qj1,...,jT ,j′ . Now it can be concluded that (7) holds.

Proof of Theorem 4. By noting that

argmax
λ∈Λl(x;θ)

λ⊤τ(x) = − argmin
λ∈Λl(x;θ)

−λ⊤τ(x),

it suffices to focus on the upper bound. Henceforth, I suppress the u subscript for ease of notation.

For each function f : Y × X → R, let GN (f(Y,X)) = N−1/2
∑N

i=1(f(Yi, Xi) − E[f(Yi, Xi)]). The

standard decomposition gives

√
N(Ψ̂(θ)−Ψ(θ)) = Gn

( ∑
λ∈Λ(X;θ)

1{λ∗(X; θ, τ0) = λ}λ⊤I(Y )
)

(16)

+Gn

( ∑
λ∈Λ(X;θ)

(1{λ∗(X; θ, τ̂) = λ} − 1{λ∗(X; θ, τ0) = λ})λ⊤I(Y )
)

(17)

+
√
NE

[ ∑
λ∈Λ(X;θ)

(1{λ∗(X; θ, τ̂) = λ} − 1{λ∗(X; θ, τ0) = λ})λ⊤I(Y )
]
. (18)

To show (17) and (18) are op(1), I will use the following lemma:
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Lemma 1. Suppose that Assumptions 3 and 5 hold. Then, for all θ, there exists C > 0 such that

for any δ ≥ 0,

Pr
(
0 < min

λ∈Λ(X;θ):λ ̸=λ∗(X;θ,τ0)
(λ− λ∗(X; θ, τ0))

⊤τ0(X) ≤ δ
)
≤ Cδ.

First, by Assumption 6, (17) is op(1) if the stochastic equicontinuity property holds: for all

positive values δN = o(1),

sup
∥τ−τ0∥∞≤δN

∣∣∣Gn

( ∑
λ∈Λ(X;θ)

(1{λ∗(X; θ, τ) = λ} − 1{λ∗(X; θ, τ0) = λ})λ⊤I(Y )
)∣∣∣ = op(1).

To this end, note that by Assumption 3,

∣∣∣ ∑
λ∈Λ(X;θ)

(1{λ∗(X; θ, τ) = λ} − 1{λ∗(X; θ, τ0) = λ})λ⊤I(Y )
∣∣∣ ≤M · 1{λ∗(X; θ, τ) ̸= λ∗(X; θ, τ0)},

where

1{λ∗(X; θ, τ) ̸= λ∗(X; θ, τ0)}

= 1{0 < (λ∗(X; θ, τ)− λ∗(X; θ, τ0))
⊤τ0(X) < (λ∗(X; θ, τ)− λ∗(X; θ, τ0))

⊤(τ0(X)− τ(X))}

≤ 1
{
0 < min

λ∈Λ(X;θ):λ̸=λ∗(X;θ,τ0)
(λ− λ∗(X; θ, τ0))

⊤τ0(X) ≤M∥τ − τ0∥∞
}

It follows that

E
[

sup
∥τ−τ0∥∞≤δN

∣∣∣ ∑
λ∈Λ(X;θ)

(1{λ∗(X; θ, τ) = λ} − 1{λ∗(X; θ, τ0) = λ})λ⊤I(Y )
∣∣∣]

≤ Pr
(
0 < min

λ∈Λ(X;θ):λ ̸=λ∗(X;θ,τ0)
(λ− λ∗(X; θ, τ0))

⊤τ0(X) ≤ δN

)
.

By Lemma 1 and Theorem 3 of Chen, Linton, and Van Keilegom (2003), (17) is op(1). Second, for

(18), observe that

E
[ ∑
λ∈Λ(X;θ)

(1{λ∗(X; θ, τ̂) = λ} − 1{λ∗(X; θ, τ0) = λ})λ⊤I(Y )
∣∣∣τ̂]

= E
[ ∑
λ∈Λ(X;θ)

(1{λ∗(X; θ, τ̂) = λ} − 1{λ∗(X; θ, τ0) = λ})λ⊤τ0(X)
∣∣∣τ̂]

= E[(λ∗(X; θ, τ̂)− λ∗(X; θ, τ0))
⊤τ0(X)1{(λ∗(X; θ, τ̂)− λ∗(X; θ, τ0))

⊤τ0(X) > 0}|τ̂ ]
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≤ E
[
(λ∗(X; θ, τ̂)− λ∗(X; θ, τ0))

⊤(τ0(X)− τ̂(X))

·1{0 < (λ∗(X; θ, τ̂)− λ∗(X; θ, τ0))
⊤τ0(X) < (λ∗(X; θ, τ̂)− λ∗(X; θ, τ0))

⊤(τ0(X)− τ̂(X))}
∣∣∣τ̂]

≤ M∥τ̂ − τ0∥∞ Pr
(
0 < min

λ∈Λ(X;θ):λ ̸=λ∗(X;θ,τ0)
(λ− λ∗(X; θ, τ0))

⊤τ0(X) ≤M∥τ̂ − τ0∥∞
∣∣∣τ̂)

≤ CM2∥τ̂ − τ0∥2∞,

where the last inequality follows from Lemma 1. Then, by Assumption 6, (18) is op(1). Now I can

apply the central limit theorem to (16) to obtain the desired result.

Appendix B Monte Carlo Simulation

I consider the same data generating process as in Section 6 with J = 2. Fixing a counterfactual value

x = (−0.5, 1) for Xit, I construct confidence intervals for the sharp bounds on the counterfactual

choice probability Pr(Yit(x) = 1). I estimate observed conditional choice probabilities τ0(x) from

a logistic regression of Yit on (X
(1)
it , X

(2)
it ,

1
T

∑T
t=1X

(1)
it ,

1
T

∑T
t=1X

(2)
it ). I normalize β

(1)
0 to one and

estimate β
(2)
0 using the maximum score estimator. Then, I employ the model-based bootstrap

procedure proposed by Cattaneo et al. (2020) to construct confidence intervals for β
(2)
0 , where I

plug in the true Hessian matrix. I choose N = 5000 and T = 10, with S = 1000 simulations

and B = 399 bootstrap replications. I set the nominal level α = 0.05 and use δ = 0.025 for the

construction of confidence intervals for β
(2)
0 .

In Table 5, I report the coverage rates and average excess lengths of the confidence intervals

for sharp bounds on Pr(Yit(x) = 1) as proposed in Proposition 1. For comparison, I also consider

infeasible scenarios where the true values of τ0(x) and/or β
(2)
0 are known. One can see that the

coverage rates are above 95% in most cases. The estimation error of τ0 has minimal effects on both

the coverage and the length of the confidence intervals. In contrast, accounting for the estimation

error of β
(2)
0 leads to conservative coverage and longer confidence intervals.

Coverage Avg. Excess Length

true τ0, true β
(2)
0 0.963 0.023

estimated τ0, true β
(2)
0 0.967 0.023

true τ0, CI for β
(2)
0 0.997 0.073

estimated τ0, CI for β
(2)
0 0.997 0.073

Table 5: 95% CI for sharp bounds on Pr(Yit(x) = 1)
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